Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (9): 935-942.DOI: 10.15541/jim20160048
• Orginal Article • Previous Articles Next Articles
GAO Xin1, LIU Xiang-Xuan1, ZHU Zuo-Ming2, XIE Zheng1, SHE Zhao-Bin3
Received:
2016-01-21
Revised:
2016-03-15
Published:
2016-09-20
Online:
2016-08-29
About author:
GAO Xin. E-mail:15991859431gx@sina.com
CLC Number:
GAO Xin, LIU Xiang-Xuan, ZHU Zuo-Ming, XIE Zheng, SHE Zhao-Bin. Photoelectrochemical and Photocatalytic Properties of NiFe2O4/TiO2 Nanorod Arrays[J]. Journal of Inorganic Materials, 2016, 31(9): 935-942.
Fig. 5 Morphology and structure of NiFe2O4/TiO2 NRAs SEM images of (a) TiO2 NRAs and (b) NiFe2O4/TiO2NRAs, with insets of their corresponding image on cross section; (c) TEM and (d) HRTEM images of NiFe2O4/TiO2 NRAs
[1] | CHEN B, ZHAO N Q, GUO L, et al.Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries.Nanoscale, 2015, 7: 12895-12905. |
[2] | BHIRUD A P, SATHAYE S D, WAICHAL R P, et al.In-situ preparation of N-TiO2/grapheme nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light.Nanoscale, 2015, 7: 5023-5034. |
[3] | HERNANDEZ-ALONSO M D, FRESNO F, SUAREZ S, et al. Development of alternative photocatalysts to TiO2: challenges and opportunities.Energy Environ. Sci., 2009, 2: 1231-1257. |
[4] | ZHOU H L, QU Y Q, ZEID T, et al.Towards highly efficient photocatalysts using semiconductor nanoarchitectures.Energy Environ Sci, 2012, 5(5): 6732-6743. |
[5] | WALTER M G, WARREN E L, MCKONE J R, et al.Solar water splitting cells.Chem. Rev. 2010, 110: 6446-6473. |
[6] | LIU M, SNAPP N, PARK H.Water photolysis with a cross-linked titanium dioxide nanowire anode.Chem. Sci., 2011, 2: 80-87. |
[7] | PESTUNOVA O P, ELIZAROVA G L, KERZHENTSEV M A, et al.Detoxication of water containing 1,1-dimethylhydrazine by catalytic oxidation with dioxygen and hydrogen peroxide over Cu- and Fe-containing catalysts. Catal. Today, 2002, 75: 219-225. |
[8] | MITCH W A, SHARP J O, TRUSSELL R R, et al.N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review.Environmental Engineering Science, 2003, 20(5): 389-404. |
[9] | ANGAJI M T, GHIAEE R.Cavitational decontamination of unsymmetrical dimethylhydrazine waste water.Journal of the Taiwan Institute of Chemical Engineers, 2015, 49: 142-147. |
[10] | 朱永法. 纳米材料的表征与测试技术. 北京: 化学工业出版社, 2006: 190-191. |
[11] | ROBERT T D, LAUDE L D, GESKIN V M, et al.Micro-Raman spectroscopy study of surface transformations induced by excimer laser irradiation of TiO2.Thin Solid Films, 2003, 440(1): 268-277. |
[12] | MA H L, YANG J Y, DAI Y, et al.Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser.Applied Surface Science, 2007, 253: 7497-7500. |
[13] | BAI H W, LIU Z Y, SUN D D L. Hierarchical ZnO/Cu "corn-like" materials with high photodegradation and antibacterial capability under visible light.Physical Chemistry Chemical Physics, 2011, 13(13): 6205-6210. |
[14] | LI Y Z, HWANG D S, LEE N H, et al.Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst.Chemical Physics Letters, 2005, 404(1): 25-29. |
[15] | REN W J, AI Z H, JIA F L, et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2.Applied Catalysis B Environmental, 2007, 69: 138-144. |
[16] | XIAO Q, OUYANG L L.Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature.Chemical Engineering Journal, 2009, 148(s 2/3): 248-253. |
[17] | XU P, XU T, LU J, et al.Visible-light-driven photocatalytic S- and C- codoped meso/nanoporous TiO2. Energy Environ. Sci. 2010, 3(8): 1128-1134. |
[18] | YUN H J, LEE H, JOO J B, et al.Facile preparation of high performance visible light sensitive photo-catalysts.Applied Catalysis B Environmental, 2010, 94(s 3/4): 241-247. |
[19] | WANG S A, XU J M, DING H L, et al.Facile synthesis of nitrogen self-doped rutile TiO2 nanorods.Crystengcomm, 2012, 14(22): 7672-7679. |
[20] | JI H Y, JING X C, XU Y G, et al.Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity.RSC Advances, 2015, 5(71): 57960-57967. |
[21] | CHEN Y L, TAO Q, FU W Y, et al.Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays.Chemical Communications, 2014, 50(67): 9509-9512. |
[22] | XIAO F X, HUANG S F, TAO H B, et al.Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures.Nanoscale, 2014, 6(24): 14950-14961. |
[23] | CHENG X W, YU X J, XING Z P.Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity.Applied Surface Science, 2012, 258(7): 3244-3248. |
[24] | SHANG S Q, JIAO X L, CHEN D R.Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties.ACS Applied Materials & Interfaces, 2011, 4(2): 860-865. |
[25] | Fu M, JIAO Q Z, ZHAO Y.Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties.J. Mater. Chem. A, 2013, 1(18): 5577-5586. |
[26] | SATO S, NAKAMURA R, ABE S.Visible-light sensitization of TiO2 photocatalysts by wet-method N doping.Applied Catalysis A General, 2005, 284: 131-137. |
[27] | RHEE C H, LEE J S, CHUNG S H.Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route.Journal of Materials Research, 2005, 20(11): 3011-3020. |
[28] | HUANG L H, SUN C, LIU Y L.Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light.Applied Surface Science, 2007, 253(17): 7029-7035. |
[29] | GUO W, SHEN Y H, BOSCHLOO G, et al.Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells.Electrochimica Acta, 2011, 56(12): 4611-4617. |
[30] | LI G S, WU L, LI F, et al.Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation.Nanoscale, 2013, 5(5): 2118-2125. |
[31] | YANG Y C, LIU Y, WEI J H, et al.Electrospun nanofibers of p-type BiFeO3/n-type TiO2 heterojunctions with enhanced visiblelight photocatalytic activity. RSC Adv., 2014, 4: 31941-31947. |
[32] | BAKER D R, KAMAT P V.Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures.Advanced Functional Materials, 2009, 19(5): 805-811. |
[33] | SUBRAMANIAN V, WOLF E E, KAMAT P V.Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and Fermi-level equilibration.J. Phys. Chem. B, 2003, 107(30): 7479-7485. |
[34] | JAKOB M, LEVANON H, KAMAT P V.Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level.Nano Letters, 2003, 3(3): 353-358. |
[35] | WOOD A, GIERSIG M, MULVANEY P.Fermi level equilibration in quantum dot-metal nanojunctions. Journal of Physical Chemistry B, 2001, 105(37): 8810-8815. |
[36] | XIE Z, LIU X X, WANG W P, et al.Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles.Science & Technology of Advanced Materials, 2014, 15(5): 1-10. |
[37] | LI N, LIU G, ZHEN C, et al.Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/Graphene composites by template-free self-assembly.Advanced Functional Materials, 2011, 21(9): 1717-1722. |
[38] | PAN X, ZHAO Y, LIU S, et al.Comparing graphene-TiOnanowire and graphene-TiO2 nanoparticle composite photocatalysts.ACS Applied Materials&Interfaces, 2012, 4(8): 3944-3950. |
[39] | 王永龄.功能陶瓷性能与应用. 北京: 科学出版社, 2003. |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[3] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[4] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[5] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[6] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[7] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[8] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[9] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[10] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[11] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[12] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[13] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[14] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[15] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||