Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1339-1344.DOI: 10.15541/jim20150345
• Orginal Article • Previous Articles
LIU Jian-Zhe1, 2, GUO Peng-Fei1
Received:
2015-07-22
Published:
2015-10-10
Online:
2015-11-24
Supported by:
CLC Number:
LIU Jian-Zhe, GUO Peng-Fei. VS2 Nanosheets: A Potential Anode Materiral for Li-ion Batteriers[J]. Journal of Inorganic Materials, 2015, 30(12): 1339-1344.
Fig. 3 TEM image of ultrathin (a), HRTEM image (b), SE-AD pattern (c), and the unit cell and side view of VS2 nanosheets (d) thicknesses is about 500 nm.
Fig. 5 Discharge and charge curves at a current density of 200 mA/g cycled between the voltage of 3.0-0.01 V vs Li/Li+ (a), cycling performance of the prepared VS2 nanosheets electrode at 200 mA/g (b), and rate capability of the VS2 nanosheets electrode between 50 mA/g and 800 mA/g (c)
Sample | Voltage vs (Li/Li+)/V | Theoretical specific capacity/ (mAh·g-1) | First discharge capacity/ (mAh·g-1) | Coulombic efficiency after (x) cycles/% | References |
---|---|---|---|---|---|
VS2 | 2.43 | 466 | 86.0 | - | [12] |
PEDOT/ VS2 | 2.68 | - | 130.0 | - | [12] |
PEDOT | 2.80 | - | 78.0 | - | [12] |
VS2 nanosheets | 2.10 | 466 | 195.4 | 98(200) | This work |
Table 1 Comparison of electrochemical performance data for various LIB electrode materials of base VS2 and its hybrids
Sample | Voltage vs (Li/Li+)/V | Theoretical specific capacity/ (mAh·g-1) | First discharge capacity/ (mAh·g-1) | Coulombic efficiency after (x) cycles/% | References |
---|---|---|---|---|---|
VS2 | 2.43 | 466 | 86.0 | - | [12] |
PEDOT/ VS2 | 2.68 | - | 130.0 | - | [12] |
PEDOT | 2.80 | - | 78.0 | - | [12] |
VS2 nanosheets | 2.10 | 466 | 195.4 | 98(200) | This work |
[1] | WANG X J, HOU Y Y, ZHU Y S.An aqueous rechargeable lithium battery using coated li metal as anode.Scientific Reports, 2013, 3: 1401-1405. |
[2] | DUNN B, KAMATH H, TARASCON J.Electrical energy storage for the grid: a battery of choices.Science, 2011, 334: 928-935. |
[3] | XI J Y, WU Z H, TENG X G, et al.Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries.Journal of Materials Chemistry, 2008, 18(11): 1232-1238. |
[4] | YANG Z G, ZHANG J L, KINTNER-MEYER MICHAEL C W, et al. Electrochemical energy storage for green grid.Chemical Reviews, 2011, 111(5): 3577-3613. |
[5] | ARMAND M, TARASCON J M.Building better batteries.Nature, 2008, 451: 652-657. |
[6] | YUAN W W, ZHANG J, XIE D, et al.Porous CoO/C polyhedra as anode material for Li-ion batteries.Electrochimica Acta, 2013, 108: 506-511. |
[7] | CHANG K, CHEN W.L-cysteine-assisted synthesis of layered mos2/graphene composites with excellent electrochemical performances for lithium ion batteries.ACS Nano, 2011, 5: 4720-4728. |
[8] | STEPHENSON T, LI Z, OLSEN B, et al.Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites.Energy & Environmental Science, 2014, 7(1): 209-231. |
[9] | KARTICK B, SRIVASTAVA S K, MAHANTY S.Tungsten disulfide-multiwalled carbon nanotube hybrid anode for lithium- ion battery.Journal of Nanoscience and Nanotechnology, 2014, 14(5): 3758-3764. |
[10] | BHANDAVAT R, DAVID L, SINGH G.Synthesis of surface- functionalized ws2 nanosheets and performance as Li-ion battery anodes.Journal of Physical Chemistry Letters, 2012, 3(11): 1523-1530. |
[11] | JING Y, ZHOU Z, CABRERA C R, et al.Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries.Journal of Physical Chemistry C, 2013, 117(48): 25409-25413. |
[12] | MURUGAN A V, GOPINATH C S, VIJAYAMOHANAN K.Electrochemical studies of poly (3, 4-ethylenedioxythiophene) PEDOT/ VS2 nanocomposite as a cathode material for rechargeable lithium batteries.Electrochemistry communications, 2005, 7(2): 213-218. |
[13] | MULAZZI M, CHAINANI A, KATAYAMA N, et al.Absence of nesting in the charge-density-wave system 1T-VS2 as seen by photoelectron spectroscopy.Physical Review B, 2010, 82(7): 075130-075135. |
[14] | FENG J, PENG L, WU C, et al.Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface.Advanced Materials, 2012, 24(15): 1969-1974. |
[15] | FENG J, SUN X, WU C, et al.Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.Journal of the American Chemical Society, 2011, 133(44): 17832-17838. |
[16] | THERESE H A, ROCKER F, REIBER A, et al.VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2.Angewandte Chemie International Edition, 2005, 44(2): 262-265. |
[17] | ROUT C S, KHARE R, KASHID R V, et al. Metallic few-layer flowerlike VS2 nanosheets as field emitters. Euro J. Inorg. Chem., 2014(31): 5331-5336. |
[18] | XU X D, JEONG S Y, ROUT C S, et al.Lithium reaction mechanism and high rate capability of VS4-graphene nanocomposite as an anode material for lithium batteries.J. Mater. Chem., 2014, 2(28): 10847-10853. |
[19] | ZHONG M, LI Y, XIA Q, et al.Ferromagnetism in VS2 nanostructures: nanoflowers versus ultrathin nanosheets.Materials Letters, 2014, 124: 282-285. |
[20] | ROUT C S, KIM B H, XU X D, et al.Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer.J. Am. Chem. Soc., 2013, 135(23): 8720-8725. |
[21] | VAN L B, IJDO D J.Preparation, crystal structure, and magnetic structure of LiCrS2 and LiVS Preparation, crystal structure, and magnetic structure of LiCrS2 and LiVSPreparation, crystal structure, and magnetic structure of LiCrS2 and LiVS2.Journal of Solid State Chemistry, 1971, 3(4): 590-595. |
[22] | HWANG H, KIM H, CHO J.MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials.Nano Letters, 2011, 11(11): 4826-4830. |
[1] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
[2] | LI Pengpeng, WANG Bing, WANG Yingde. Ultrafast CO Sensor Based on Flame-annealed Porous CeO2 Nanosheets for Environmental Application [J]. Journal of Inorganic Materials, 2021, 36(11): 1223-1230. |
[3] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[4] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[5] | DONG Lijia, GUO Xiaojie, LI Xue, CHEN Chaogui, JIN Yang, AHMED Alsaedi, TASAWAR Hayat, ZHAO Qingzhou, SHENG Guodong. Microscopic Insights into pH-dependent Adsorption of Cd(II) on Molybdenum Disulfide Nanosheets [J]. Journal of Inorganic Materials, 2020, 35(3): 293-300. |
[6] | WEI Xin, LU Zhanhui, WANG Luping, FANG Ming. Mechanism Study of Tetracycline High Efficient Photodegradation by Bi2WO6 Nanosheets under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2020, 35(3): 324-328. |
[7] | ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery [J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306. |
[8] | MA Bao-Kai, LI Mian, CHEONG Ling-Zhi, WENG Xin-Chu, SHEN Cai, HUANG Qing. Enzyme-MXene Nanosheets: Fabrication and Application in Electrochemical Detection of H2O2 [J]. Journal of Inorganic Materials, 2020, 35(1): 131-138. |
[9] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
[10] | JIAO Si-Yi, GE Wan-Yin, YIN Li-Xiong, XU Mei-Mei, CHANG Zhe, ZHANG Li. Controllable Synthesis and Growth Mechanism of Two-dimensional TiSe2 Nanosheets [J]. Journal of Inorganic Materials, 2019, 34(8): 834-838. |
[11] | ZHU Meng-Meng, LI Guo-Hua, ZHANG Xue-Ming, ZHAI Jia-Xin, GAN Si-Ping, SONG Xiao. Boron Nitride Nanosheets Supported Cu2O Nanoparticles: Synthesis and Catalytic Reduction for 4-nitrophenol [J]. Journal of Inorganic Materials, 2019, 34(8): 817-826. |
[12] | Ren-Jie GENG, Song-Feng E, Chao-Wei LI, Tao-Tao LI, Jun WU, Ya-Gang YAO. High Crystallinity Boron Nitride Nanosheets: Preparation and the Property of BNNSs/Polyvinyl Alcohol Composite Film [J]. Journal of Inorganic Materials, 2019, 34(4): 401-406. |
[13] | Yi TAN, Kai WANG. Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review [J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. |
[14] | YAN Xin, LU Jin-Hua, HUI Xiao-Yan, YAN Cong-Xiang, GAO Qiang, SUN Guo-Dong. Preparation and Visible Light Photocatalytic Property of g-C3N4/MoS2 Nanosheets/GO Ternary Composite Photocatalyst [J]. Journal of Inorganic Materials, 2018, 33(5): 515-520. |
[15] | CHENG Hou-Yan, LUO Jun, HUANG Li-Qun, LI Jia-Ke, YANG Zhi-Sheng, GUO Ping-Chun, WANG Yan-Xiang, ZHANG Qi-Feng. Preparation of Flexible Dye-sensitized Solar Cells Based on Hierarchical Structure ZnO Nanosheets [J]. Journal of Inorganic Materials, 2018, 33(5): 507-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||