Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (1): 45-50.DOI: 10.3724/SP.J.1077.2013.12066
• Orginal Article • Previous Articles Next Articles
ZHAO Xin, WANG De-Ping, QIU Wen-Qing, YE Song
Received:
2012-02-02
Revised:
2012-03-27
Published:
2013-01-10
Online:
2012-12-20
About author:
ZHAO Xin. E-mail: zhaoxin_cynthia@163.com
Supported by:
CLC Number:
ZHAO Xin, WANG De-Ping, QIU Wen-Qing, YE Song. Influence of Strontium on Hydroxyapatite Morphology and Luminescence Characteristics[J]. Journal of Inorganic Materials, 2013, 28(1): 45-50.
Add to citation manager EndNote|Ris|BibTeX
Sample | Sr(NO3)2 /mmol | Ca(NO3)2·4H2O/mmol | χSr=n(Sr)/ n(Ca+Sr) |
---|---|---|---|
S1 | 0 | 3 | 0 |
S2 | 0.9 | 2.1 | 0.3 |
S3 | 1.5 | 1.5 | 0.5 |
S4 | 3 | 0 | 1 |
Table 1 Formula of strontium hydroxyapatite samples
Sample | Sr(NO3)2 /mmol | Ca(NO3)2·4H2O/mmol | χSr=n(Sr)/ n(Ca+Sr) |
---|---|---|---|
S1 | 0 | 3 | 0 |
S2 | 0.9 | 2.1 | 0.3 |
S3 | 1.5 | 1.5 | 0.5 |
S4 | 3 | 0 | 1 |
Sample | Product | 2θ(211) | (a=b)/nm | c/nm |
---|---|---|---|---|
S1 | Ca10(PO4)6(OH)2 | 31.54 | 0.94533 | 0.69063 |
S2 | Ca7Sr3(PO4)6(OH)2 | 31.40 | 0.95299 | 0.70126 |
S3 | Ca5Sr5(PO4)6(OH)2 | 31.22 | 0.95931 | 0.70945 |
S4 | Sr10(PO4)6(OH)2 | 30.40 | 0.98235 | 0.72865 |
Table 2 Crystalline phase, peak position (211) and lattice parameters of different samples
Sample | Product | 2θ(211) | (a=b)/nm | c/nm |
---|---|---|---|---|
S1 | Ca10(PO4)6(OH)2 | 31.54 | 0.94533 | 0.69063 |
S2 | Ca7Sr3(PO4)6(OH)2 | 31.40 | 0.95299 | 0.70126 |
S3 | Ca5Sr5(PO4)6(OH)2 | 31.22 | 0.95931 | 0.70945 |
S4 | Sr10(PO4)6(OH)2 | 30.40 | 0.98235 | 0.72865 |
Sample | OKLL-Mg | O1s | Ca2s | Ca2p1/2 | Ca2p3/2 | C1s | C1s(Ⅲ) | P2s | P2p3 | Sr3d |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 750.20 | 535.80 | 443.21 | 355.40 | 352.20 | 289.00 | - | 195.06 | 138.00 | - |
S2 | 750.20 | 536.60 | 444.00 | 356.00 | 352.60 | 289.80 | 284.54 | 195.27 | 140.59 | 140.59 |
S3 | 750.20 | 535.60 | 443.82 | 355.00 | 351.80 | 288.00 | 283.00 | 194.20 | 139.00 | 137.23 |
Table 3 XPS peak energies of samples S1, S2 and S3
Sample | OKLL-Mg | O1s | Ca2s | Ca2p1/2 | Ca2p3/2 | C1s | C1s(Ⅲ) | P2s | P2p3 | Sr3d |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 750.20 | 535.80 | 443.21 | 355.40 | 352.20 | 289.00 | - | 195.06 | 138.00 | - |
S2 | 750.20 | 536.60 | 444.00 | 356.00 | 352.60 | 289.80 | 284.54 | 195.27 | 140.59 | 140.59 |
S3 | 750.20 | 535.60 | 443.82 | 355.00 | 351.80 | 288.00 | 283.00 | 194.20 | 139.00 | 137.23 |
[1] | Brandt J, Henning S, Michler G, et al. Nanocrystalline hydroxyapatite for bone repair: an animal study. Journal of Materials Science-Materials in Medicine, 2010, 21(1): 283-294. |
[2] | Hou Z Y, Yang P P, Lian H Z, et al. Multifunctional hydroxyapatite nanofibers and microbelts as drug carriers. Chemistry- Aeuropean Journal Chemistry-A European Journal, 2009, 15(28): 6973-6982. |
[3] | Murakami Y, Rikimra S, Sugo K, et al. Preparation of polyethylenimine-hydroxyapatite and its chromatographic use. Journal of Liquid Chromatography & Related Technologies, 2009, 32(2): 407-417. |
[4] | Bazarqan-Lari R, Bahrololoom M E, Nemati A, et al. Adsorption of Cu (II) ions from industrial wastewater on natural hydroxyapatite extracted from bone ash. Journal of Food Agriculture & Environment, 2011, 2(1): 652-657. |
[5] | Boanini E, Torricelli P, Fini M. Osteopenic bone cell response to strontium-substituted hydroxyapatite. Journal of Materials Science- Materials in Medicine, 2011, 22(9): 2079-2088. |
[6] | Feng Y A, Gong J L, Zeng G M, et al. Adsorption of Cd (II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 2010, 162(2): 487-494. |
[7] | Guo Y P, Guo L H, Yao Y B, et al. Magnetic mesoporous carbonated hydroxyapatite microspheres with hierarchical nanostructure for drug delivery systems. Chemical Communications, 2011, 47(44): 12215-12217. |
[8] | Liu H Y, Xi P X, Xie G Q, et al. Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch. Journal of Biological Inorganic Chemistry, 2011, 16(8): 1135-1140. |
[9] | Zhang M, Liu J K, Miao R, et al. Preparation and characterization of fluorescence probe from assembly hydroxyapatite nanocomposite. Nanoscale Research Letters, 2010, 5(4): 675-679. |
[10] | Han Y C, Wang X Y, Li S P. Biocompatible europium doped hydroxyapatite nanoparticles as a biological fluorescent probe. Current Nanoscience, 2010, 6(2): 178-183. |
[11] | Hsieh M F, Li J K J, Lin C A J, et al. Tracking of vellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells. Journal of Nanoscience And Nanotechnology, 2009, 9(4): 2758-2762. |
[12] | Chen F, Wang Z C, Lin C J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Materials Letters, 2002, 57(4): 858-861. |
[13] | Sonoda K, Furuzono T, Walsh D, et al. Influence of emulsion on crystal growth of hydroxyapatite. Solid State Ionics, 2002, 151(1-4): 321-327. |
[14] | Kannan S, Lemos A F, Ferreira J M F. Synthesis and mechanical performance of biological-like hydroxyapatites. Chemistry of Materials, 2006, 18(8): 2181-2186. |
[15] | Zhong W Z, Luo H S, Hua S K, et al. Crystal surface structure and its growth units of anionic coordination polyhedra. Journal of Synthetic Crystals, 2004, 33(4): 471-474. |
[16] | Zhong W Z, Zhang X H, Luo H S, et al. Growth habit of nano-crystals - the application of growth unit model of anion coordination- polyhedra. Journal of The Chinese Ceramic Society, 2004, 32(3): 239-244. |
[17] | Christoffersen J, Christoffersen M R, Kolthoff N, et al. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone, 1997, 20(1): 47-54. |
[18] | 张 锐. 磷灰石纳米粒子的掺杂及其表征. 武汉: 武汉理工大学硕士论文, 2006. |
[19] | Zhang C M, Yang J, Quan Z W, et al. Hydroxyapatite nano- and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Crystal Growth & Design, 2009, 9(6): 2725-2733. |
[1] | YUE Quanxin, GUO Ruihua, WANG Ruifen, AN Shengli, ZHANG Guofang, GUAN Lili. 3D Core-shell Structured NiMoO4@CoFe-LDH Nanorods: Performance of Efficient Oxygen Evolution Reaction and Overall Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1254-1264. |
[2] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[3] | XU Zhou, LIU Yuxuan, CHI Junlin, ZHANG Tingting, WANG Shuyue, LI Wei, MA Chunhui, LUO Sha, LIU Shouxin. Horseshoe-shaped Hollow Porous Carbon: Synthesis by Hydrothermal Carbonization with Dual-template and Electrochemical Property [J]. Journal of Inorganic Materials, 2023, 38(8): 954-962. |
[4] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[5] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. |
[6] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[7] | WANG Zhiqiang, WU Ji’an, CHEN Kunfeng, XUE Dongfeng. Large-size Er,Yb:YAG Single Crystal: Growth and Performance [J]. Journal of Inorganic Materials, 2023, 38(3): 329-334. |
[8] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. |
[9] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[10] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[11] | GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor [J]. Journal of Inorganic Materials, 2022, 37(6): 676-682. |
[12] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[13] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[14] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. |
[15] | ZHANG Cong, LI Yurou, SHAO Kang, LIN Jing, WANG Kai, PAN Zaifa. Luminescence Property of the Multicolor Persistent Luminescence Materials for Dynamic Anti-counterfeiting Applications [J]. Journal of Inorganic Materials, 2021, 36(12): 1256-1262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||