Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (1): 74-78.DOI: 10.3724/SP.J.1077.2012.00074
• Orginal Article • Previous Articles Next Articles
WEN Hao1, 2, LIU Zhi-Fu1, YANG Qun-Bao1, LI Yong-Xiang1
Received:
2011-04-15
Revised:
2011-06-07
Published:
2012-01-09
Online:
2011-12-19
Supported by:
CLC Number:
WEN Hao, LIU Zhi-Fu, YANG Qun-Bao, LI Yong-Xiang. Enhanced Electrochromic Properties by Using a CeO2 Modified TiO2 Nanotube Array Transparent Counter Electrode[J]. Journal of Inorganic Materials, 2012, 27(1): 74-78.
Add to citation manager EndNote|Ris|BibTeX
Fig. 7 Transmittance of the electrochromic devices with different counter electrodes made from CeO2, G-ATO and G-ATO/CeO2 under the constant voltages of -1.5 V and +1.2 V, respectively
[1] | Michaelis A, Berneth H, Haarer D, et al. Electrochromic dye system for smart window applications. Adv. Mater., 2001, 13(23): 1825-1828. |
[2] | Corr D, Bach U, Fay D, et al. Coloured electrochromic “paper- quality” displays based on modified mesoporous electrodes. Solid State Ionics, 2003, 165(1-4): 315-321. |
[3] | Granqvist C G, Avendano E, Azens A. Advances in electrochromic materials and devices. Materials Science Forum, 2004, 455-456: 1-6. |
[4] | Tsutsumi H, Nakagawa Y, Miyazaki K, et al. Polymer Gel films with simple organic electrochromics for single-film electrochromic devices. J. Polym. Sci., Part A: Polym. Chem., 1992, 30(8): 1725-1729. |
[5] | Kobayashi N, Chinone H, Miyazaki A. Polymer electrolyte for novel electrochromic display. Electrochim. Acta, 2003, 48(14/15/16): 2323-2327. |
[6] | Rosseinsky D R, Mortimer R J. Electrochromic systems and the prospects for devices. Adv. Mater., 2001, 13(11): 783-793. |
[7] | Verma A, Bakhshi A K, Agnihotry S A. Effect of citric acid on properties of CeO2 films for electrochromic windows. Sol. Energy Mater. Sol. Cells, 2006, 90(11): 1640-1655. |
[8] | Verma A, Samanta S B, Mehra N C, et al. Sol-Gel derived nanocrystalline CeO2-TiO2 coatings for electrochromic windows. Sol. Energy Mater. Sol. Cells, 2005, 86(1): 85-103. |
[9] | Rosario A V, Pereira E C. Comparison of the electrochemical behavior of CeO2-SnO2 and CeO2-TiO2 electrodes produced by the Pechini method. Thin Solid Films, 2002, 410(1/2): 1-7. |
[10] | Avellaneda C O, Bulhoes L O S, Pawlicka A. The CeO2-TiO2-ZrO2 Sol-Gel film: a counter-electrode for electrochromic devices. Thin Solid Films, 2005, 471(1/2): 100-104. |
[11] | Macak J M, Tsuchiya H, Ghicov A, et al. Dye-sensitized anodic TiO2 nanotubes. Electrochem. Commun., 2005, 7(11): 1133-1137. |
[12] | Ghicov A, Albu S P, Hahn R, et al. TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. Chem. Asian J., 2009, 4(4): 520-525. |
[13] | Kavan L, Kalbac M, Zukalova M, et al. Lithium storage in nano- structured TiO2 made by hydrothermal growth. Chem. Mater., 2004, 16(3): 477-485. |
[14] | Paulose M, Varghese O K, Mor G K, et al. Unprecedented ultra- high hydrogen gas sensitivity in undoped titania nanotubes. Nat. Nanotechnol., 2006, 17(2): 398-402. |
[15] | Wen H, Liu Z, Yang Q, et al. Synthesis and electrochemical properties of CeO2 nanoparticles modified TiO2 nanotube arrays. Electrochim. Acta, 2011, 56(7): 2914-2918. |
[16] | Yassar A, Roncali J, Garnier F. conductivity and conjugation length in poly(3-Methylthiophene) thin-films. Macromolecules, 1989, 22(2): 804-809. |
[17] | Ma L J, Li Y X, Yu X F, et al. Electrochemical preparation of PMeT/TiO2 nanocomposite electrochromic electrodes with enhanced long-term stability. J. Solid State Electrochem., 2008, 12(11): 1503-1509. |
[18] | Bard A J,Faulkner L R. Electrochemical Methods: Fundamentals and Applications. Shao Yuanhua, Zhu Guoyi, Dong Xiandui, Zhang Bolin, trans. 2nd ed. Beijing: Chemical Industry Press, 2005: 159. |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | ZHEN Mingshuo, LIU Xiaoran, FAN Xiangqian, ZHANG Wenping, YAN Dongdong, LIU Lei, LI Chen. Electrochromic Intelligent Visual Humidity Indication System [J]. Journal of Inorganic Materials, 2024, 39(4): 432-440. |
[3] | CHEN Haiyan, TANG Zhipeng, YIN Liangjun, ZHANG Linbo, XU Xin. Low-frequency Microwave Absorption of CIPs@Mn0.8Zn0.2Fe2O4-CNTs Composites [J]. Journal of Inorganic Materials, 2024, 39(1): 71-80. |
[4] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[5] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. |
[6] | SUN Jiawei, WAN Xinyi, YANG Ting, MA Dongyun, WANG Jinmin. Preparation and Electrochromic Properties of Ti2Nb10O29 Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1434-1440. |
[7] | TIAN Yubin, TIAN Chaofan, LI Sen, ZHAO Yongxin, XING Tao, LI Zhi, CHEN Xiaoru, XIANG Shuairong, DAI Pengcheng. Biomass-derived High-conductivity Carbon Cloth: Preparation and Application as Gas Diffusion Layers in Fuel Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1316-1322. |
[8] | WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300. |
[9] | JIA Xin, LI Jinyu, DING Shihao, SHEN Qianqian, JIA Husheng, XUE Jinbo. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301-1308. |
[10] | CHEN Zhang, ZHAO Ruoyi, HAN Shaojie, WANG Huanran, YANG Qun, GAO Yanfeng. Electrochromic WO3 Thin Films: Preparation by Nanocrystalloid Liquid Phase Coating and Performance Optimization [J]. Journal of Inorganic Materials, 2023, 38(11): 1355-1363. |
[11] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[12] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[13] | WU Qiuqin, YAO Fenfa, JIN Chuanhong, ZHENG Yifan. One-dimensional Sub-stoichiometric W3O8 Nanowires Filled Carbon Nanotubes [J]. Journal of Inorganic Materials, 2022, 37(4): 413-419. |
[14] | LÜ Qingyang, ZHANG Yuting, GU Xuehong. Fabrication of Hollow Fiber Supported TiO2 Ultrafiltration Membranes via Ultrasound-assisted Sol-Gel Method [J]. Journal of Inorganic Materials, 2022, 37(10): 1051-1057. |
[15] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||