[1]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res., 1999, 32(5): 435-445.
[2]Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457): 1471-1473.
[3]Xia Y N, Yang P D, Sun Y G, et al. Onedemensional nanostructures: synthesis, characterization and applications. Adv. Mater., 2003, 15(5): 353-389.
[4]Cheng J P, Zhang X B, Luo Z Q, et al. Carbon nanotube synthesis and parametric study using CaCO3 nanocrystals as catalyst support by CVD. Mater. Chem. Phys., 2006, 95(1): 5-11.
[5]Cheng J P, Zhang X B, Tao X Y, et al. Finetuning the synthesis of ZnO nanostructures by an alcohol thermal process. J. Phys. Chem. B, 2006, 110(21): 10348-10353.
[6]Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292.
[7]Bensted J, Barnes P. Structure and Performance of Cements. London: Spon Press, 2002.
[8]Cole W F, Demediuk T. X-ray, thermal,and dehydration studies on magnesium oxychlorides. Aust. J. Chem., 1955, 8(2): 234-251.
[9]Hornsby P. Multifunctional Barriers for Flexible Structure. Springer, 2007: 3-22.
[10]Jeevanandam P, Mulukutla R S, Yang Z, et al. Nanocrystals to nanorods: a precursor approach for the synthesis of magnesium hydroxide nanorods from magnesium oxychloride nanorods starting from nanocrystalline magnesium oxide. Chem. Mater., 2007, 19(22): 5395-5403.
[11]Fan W L, Sun S X, Song X Y, et al. Controlled synthesis of singlecrystalline Mg(OH)2 nanotubes and nanorods via a solvothermal process. J. Solid State Chem., 2004, 177(7): 2329-2338.
[12]Fan W L, Sun S X, You L P, et al. Solvothermal synthesis of Mg(OH)2 nanotubes using Mg10(OH)18Cl2·5H2O nanowires as precursors. J. Mater. Chem., 2003, 13(12): 3062-3065.
[13]Wei Q, Lieber C M. Solution-based synthesis of magnesium oxide nanorods. Nanophase and Nanocomposite Mater. Ⅲ, 2000, 581: 3-7.
[14]赵爱东, 申玉双, 翟学良(ZHAO Ai-Dong, et al). 一种制备氧化镁纤维的方法. 无机材料学报(Journal of Inorganic Materials), 2008, 20(1): 215-219.
[15]Matkovic B, Popovic S, Rogic V, et al. Reaction products in magnesium oxychloride cement pastes system MgO-MgCl2-H2O. J. Am. Ceram. Soc., 1977, 60(11/12): 504-507.
[16]Bilinski H, Matkovic B, Mazuranic C, et al. The formation of magnesium oxychloride phases in the systems MgO-MgCl2H2O and NaOH-MgCl2-H2O. J. Am. Ceram. Soc., 1984, 67(4): 266-269.
[17]Christensen A N, Norby P, Hanson J C. Chemical reactions in the system MgO-MgCl2-H2O followed by time-resolved synchrotron X-ray powder diffraction. J. Solid State Chem., 1995, 114(2): 556-559.
[18]Sorrell C A, Armstrong C R. Reactions and equilibria in magnesium oxychloride cements. J. Am. Ceram. Soc., 1976, 59(1/2): 51-54.
[19]Ball M C. Reactions of compounds occurring in sorel′s cements. Cement. Concrete. Res., 1977, 7: 575-584.
[20]Wolff P M, Kortlandt D. Crystal structure determination from and X-ray powder diffraction pattern of β-Mg2(OH)3Cl. Appl. Sci. Res., 1954, 3(1): 400-408.
[21]Sugimoto K, Dinnebier R E, Schlecht T. Structure determination of Mg3(OH)5Cl·4H2O(F5 phase) from laboratory powder diffraction data and its impact on the analysis of problematic magnesia floors. Acta Crystallogr., Sect. B: Struct. Sci., 2007, 63: 805-811.
[22]Deng D H, Zhang C M. The formation mechanism of the hydrate phases in magnesium oxychloride cement. Cem. Concr. Res., 1999, 29(9): 1365-1371.
[23]张振禹, 戴长禄, 张铨昌, 等(ZHANG Zhen-Yun, et al). 相5和相3的形成机理研究. 中国科学B辑:化学(Science in China Series B: Chemistry), 1991, 34(12): 1501-1509.
[24]Fan W L, Song X Y, Sun S X, et al. Hydrothermal formation and characterization of magnesium hydroxide chloride hydrate nanowires. J. Cryst. Growth, 2007, 305(1): 167-174.
[25]李春忠, 古庆山, 程起林, 等. 针状碱式氯化镁的合成及形态分析. 华东理工大学学报, 2005, 31(3): 314-318.
[26]Mazuranic C, Bilinski H, Matkovic B. Reaction products in the system MgO-MgCl2-H2O. J. Am. Ceram. Soc., 1982, 65(10): 523-526.
|