Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (11): 1364-1370.DOI: 10.15541/jim20230101
Special Issue: 【信息功能】介电、铁电、压电材料(202506); 【信息功能】纪念殷之文先生诞辰105周年虚拟学术专辑
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													SU Maoxin1,2(
), LI Xinchen1, XIONG Kainan2, WANG Sheng2, CHEN Yunlin1(
), TU Xiaoniu2(
), SHI Erwei2
												  
						
						
						
					
				
Received:2023-02-28
															
							
																	Revised:2023-03-06
															
							
															
							
																	Published:2023-07-28
															
							
																	Online:2023-07-28
															
						Contact:
								CHEN Yunlin, professor. E-mail: ylchen@bjtu.edu.cn;About author:SU Maoxin (1994-), male, Master candidate. E-mail: 1069016053@qq.com				
													Supported by:CLC Number:
SU Maoxin, LI Xinchen, XIONG Kainan, WANG Sheng, CHEN Yunlin, TU Xiaoniu, SHI Erwei. Characterization of High Temperature Resistivity and Full Matrix Material Coefficient of LGT Crystals[J]. Journal of Inorganic Materials, 2023, 38(11): 1364-1370.
| Atmosphere | T /℃ | Ea(LGT)/eV | Ea(LGAT)/eV | 
|---|---|---|---|
| Oxygen | 400-500 | 1.14 | 0.99 | 
| 525-650 | 1.05 | ||
| Nitrogen | 400-550 | 1.0 | 0.95 | 
| 550-700 | 1.36 | 1.26 | |
| Argon | 400-700 | 0.84 | 0.91 | 
Table 1 Activation energy of LGT and LGAT crystal in different atmospheres
| Atmosphere | T /℃ | Ea(LGT)/eV | Ea(LGAT)/eV | 
|---|---|---|---|
| Oxygen | 400-500 | 1.14 | 0.99 | 
| 525-650 | 1.05 | ||
| Nitrogen | 400-550 | 1.0 | 0.95 | 
| 550-700 | 1.36 | 1.26 | |
| Argon | 400-700 | 0.84 | 0.91 | 
| T/℃ | ||
|---|---|---|
| 20 | 18.6 | 75.9 | 
| 400 | 19.8 | 59.7 | 
Table 2 Clamping dielectric constant of LGT crystal
| T/℃ | ||
|---|---|---|
| 20 | 18.6 | 75.9 | 
| 400 | 19.8 | 59.7 | 
| T/℃ |  Elastic coefficient/(×1010, N·m-2) | Piezoelectric coefficient/(C·m-2) | ||||||
|---|---|---|---|---|---|---|---|---|
| 20 | 18.586 | 10.524 | 9.785 | 1.353 | 26.003 | 5.093 | -0.439 | 0.123 | 
| 400 | 18.346 | 10.314 | 9.694 | 1.256 | 25.340 | 5.056 | -0.429 | 0.209 | 
Table 3 Inversion results of LGT crystal elasticity and piezoelectric coefficient
| T/℃ |  Elastic coefficient/(×1010, N·m-2) | Piezoelectric coefficient/(C·m-2) | ||||||
|---|---|---|---|---|---|---|---|---|
| 20 | 18.586 | 10.524 | 9.785 | 1.353 | 26.003 | 5.093 | -0.439 | 0.123 | 
| 400 | 18.346 | 10.314 | 9.694 | 1.256 | 25.340 | 5.056 | -0.429 | 0.209 | 
| 18.586 | 10.524 | 9.785 | 1.353 | 26.003 | 5.093 | 18.703 | 10.406 | 9.785 | 1.320 | 26.003 | 5.102 | |||||
| 9.108 | -4.509 | -1.731 | -3.617 | 5.148 | 21.56 | 8.866 | -4.268 | -1.731 | -3.397 | 5.148 | 21.36 | |||||
| -0.439 | 0.123 | -6.43 | 5.83 | |||||||||||||
| -3.903 | 3.543 | -26.67 | 7.482 | |||||||||||||
| 19.3 | 75.9 | 18.6 | 75.9 | 518 | 132 | 538 | 132 | |||||||||
Table 4 Full matrix material coefficient of LGT crystal at 20 ℃
| 18.586 | 10.524 | 9.785 | 1.353 | 26.003 | 5.093 | 18.703 | 10.406 | 9.785 | 1.320 | 26.003 | 5.102 | |||||
| 9.108 | -4.509 | -1.731 | -3.617 | 5.148 | 21.56 | 8.866 | -4.268 | -1.731 | -3.397 | 5.148 | 21.36 | |||||
| -0.439 | 0.123 | -6.43 | 5.83 | |||||||||||||
| -3.903 | 3.543 | -26.67 | 7.482 | |||||||||||||
| 19.3 | 75.9 | 18.6 | 75.9 | 518 | 132 | 538 | 132 | |||||||||
| 18.346 | 10.314 | 9.694 | 1.256 | 25.340 | 5.056 | 18.451 | 10.209 | 9.694 | 1.205 | 25.340 | 5.081 | ||||
| 9.103 | -4.396 | -1.801 | -3.353 | 5.324 | 21.44 | 8.873 | -4.165 | -1.801 | -3.092 | 5.324 | 21.15 | ||||
| e11 | e14 | d11 | d14 | ||||||||||||
| -0.429 | 0.209 | -6.48 | 7.34 | ||||||||||||
| g11 | g14 | h11 | h14 | ||||||||||||
| -3.699 | 4.190 | -24.45 | 11.89 | ||||||||||||
| 20.6 | 59.7 | 19.8 | 59.7 | 485 | 168 | 505 | 168 | ||||||||
Table 5 Full matrix material coefficient of LGT crystal at 400 ℃
| 18.346 | 10.314 | 9.694 | 1.256 | 25.340 | 5.056 | 18.451 | 10.209 | 9.694 | 1.205 | 25.340 | 5.081 | ||||
| 9.103 | -4.396 | -1.801 | -3.353 | 5.324 | 21.44 | 8.873 | -4.165 | -1.801 | -3.092 | 5.324 | 21.15 | ||||
| e11 | e14 | d11 | d14 | ||||||||||||
| -0.429 | 0.209 | -6.48 | 7.34 | ||||||||||||
| g11 | g14 | h11 | h14 | ||||||||||||
| -3.699 | 4.190 | -24.45 | 11.89 | ||||||||||||
| 20.6 | 59.7 | 19.8 | 59.7 | 485 | 168 | 505 | 168 | ||||||||
| [1] |  
											 YANG H P, ZHOU X F, FANG H J, et al. Study on field-induced strain properties of sodium bismuth titanate based lead-free ferroelectric ceramics. Journal of Inorganic Materials, 2022,  37(6): 603. 
																							 DOI URL  | 
										
| [2] |  
											 WEI Z Q, XIA X, LI Q, et al. Preparation and properties of barium titanate/calcium silicate composite bioactive piezoelectric ceramics. Journal of Inorganic Materials, 2022,  37(6): 617. 
																							 DOI  | 
										
| [3] |  
											 NAN B, ZANG J D, Lu W L, et al. Research progress in manufacturing piezoelectric ceramics with additives. Journal of Inorganic Materials, 2022,  37(6): 585. 
																							 DOI  | 
										
| [4] | BARDONG J, BRUCKNER G, KRAFT M, et al. Influence of Packaging Atmospheres on the Durability of High-temperature SAW Sensors. IEEE International Ultrasonics Symposium, Rome, Italy, 2009: 1680. | 
| [5] |  
											 TIAN S, Li L, Lu X, et al. Electrical conduction mechanism of rare-earth calcium oxyborate high temperature piezoelectric crystals. Acta Materialia, 2020,  183: 165. 
																							 DOI URL  | 
										
| [6] |  
											 LUCAS K, BOUCGY S, BELANGER P, et al. High-temperature electrical conductivity in piezoelectric lithium niobate. Journal of Applied Physics, 2022,  131(19): 194102. 
																							 DOI URL  | 
										
| [7] |  
											 OGI H, NAKAMURA N, SATO K, et al. Elastic, anelastic, and piezoelectric coefficients of langasite: resonance ultrasound spectroscopy with laser-Doppler interferometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003,  50(5): 553. 
																							 DOI URL  | 
										
| [8] | VIJAY S. Defect Chemistry and DFT Modelling of La3Ta0.5Ga5. 5O14. Oslo, Norway: University of Oslo Department of Chemistry, 2013. | 
| [9] |  
											 ZHANG S J, KONG H K, XIA R, et al. Growth and high- temperature electromechanical properties of Ca3NbX3Si2O14 (X= Ga and Al) piezoelectric crystals. Solid State Communications, 2010,  150(9/10): 435. 
																							 DOI URL  | 
										
| [10] |  
											 SHI X Z, YUAN D R, YIN X, et al. Crystal growth and dielectric, piezoelectric and elastic properties of Ca3TaGa3Si2O14 single crystal. Solid State Communications, 2007,  142(3): 173. 
																							 DOI URL  | 
										
| [11] |  
											 SEH H, TULLER H L, FRITZE H. Langasite for high-temperature acoustic wave gas sensors. Sensors and Actuators B: Chemical, 2003,  93(1/2/3): 169. 
																							 DOI URL  | 
										
| [12] |  
											 FRITZE H, SEH H, TULLER H L, et al. Operation limits of langasite high temperature nanobalances. Journal of the European Ceramic Society, 2001,  21(10/11): 1473. 
																							 DOI URL  | 
										
| [13] |  
											 XIONG K N, ZHENG Y Q, TU X N, et al. Growth and high temperature properties of Ca3Ta(Al0. 9Ga0.1)3Si2O14 crystals with ordered langasite structure. Journal of Crystal Growth, 2014,  401: 820. 
																							 DOI URL  | 
										
| [14] | TANG L G, ZHUANG M H, LI H. Application of ultrasonic resonance spectroscopy in characterization of piezoelectric materials. Journal of Shaanxi Normal University (Natural Science Edition), 2019, 47(6): 44. | 
| [15] | TAKEDA H, TANAKA S, LZUKAWA S, et al. Effective substitution of aluminum for gallium in langasite-type crystals for a pressure sensor use at high temperature. IEEE International Ultrasonics Symposium. Rotterdam, 2005: 560. | 
| [16] |  
											 BJORHEIM T S, SHANMUGAPPIRABU V, HAUGSRUD R, et al. Protons in piezoelectric langatate: La3Ga5.5Ta0.5O14. Solid State Ionics, 2015,  278: 275. 
																							 DOI URL  | 
										
| [17] |  
											 ANFIMOV I M, BUZANOV O A, KOZLOVA A P, et al. Impedance spectroscopy study of lanthanum-gallium tantalate single crystals grown under different conditions. Modern Electronic Materials, 2019,  5(2): 41. 
																							 DOI URL  | 
										
| [18] |  
											 MALINKOVICH M D, PARKHOMENKO Y N, SKRYLEVA E A, et al. XPS study of gallium loss from langasite crystal surface under vacuum annealing. Sensors and Actuators A: Physical, 2012,  180: 63. 
																							 DOI URL  | 
										
| [19] | JOSEPH M, TABATA H, SAEKI H, et al. Fabrication of the low- resistive p-type ZnO by codoping method. Physica B: Condensed Matter, 2001, 302: 140. | 
| [1] | YANG Yanguo, REN Haishen, HE Daihua, LIN Huixing. Effect of Cation Field Strength on Structure and High-temperature Properties of BaO-SiO2-Ln2O3 Glass-ceramic [J]. Journal of Inorganic Materials, 2023, 38(10): 1207-1215. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||