Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (2): 236-242.DOI: 10.15541/jim20190106
Special Issue: 功能陶瓷论文精选(一):发光材料
• RESEARCH LETTERS • Previous Articles Next Articles
WANG Meng-Hui1,SHEN Hui1,2(),TIAN Tian1,XIAN Qin1,XU Jia-Yue1(
),JIN Min3,JIA Run-Ping1
Received:
2019-03-12
Revised:
2019-04-29
Published:
2020-02-20
Online:
2019-07-23
Supported by:
CLC Number:
WANG Meng-Hui,SHEN Hui,TIAN Tian,XIAN Qin,XU Jia-Yue,JIN Min,JIA Run-Ping. Preparation and Tunable Luminescence of Eu Doped KNN Ceramics[J]. Journal of Inorganic Materials, 2020, 35(2): 236-242.
Fig. 1 XRD patterns of the precursor powders synthesized at 200 ℃ for 12 h (K+/Na+=3:1) with different [OH-] concentrations (a), XRD patterns of KNN:xEu (x=0.02, 0.04, 0.06, 0.08, 0.10) powders synthesized at 200 ℃ for 12 h (K+/Na+=3:1, [OH-]=11 mol/L) (b) and zoomed XRD patterns from (b) within 30°-33° (c)
Fig. 3 Excitaion (λem=618 nm) spectra of the KNN:0.06Eu ceramics and emission (λex=465 nm) spectra of KNN:xEu ceramics at room temperature (a) and the dynamic decay curves on Eu3+ concentrations for KNN:Eu samples under 465 excitation (b)
Fig. 4 Reflectance spectra for the KNN:0.06Eu by UV light irradiation (0 s, 30 s, 60 s, 2 and 3 min) (a), difference absorption (Δabs) spectra for the KNN:0.06Eu by UV irradiation 3 min with inset showing photographs of color changes of ceramic before and after UV irradiation (b), the Δabs vs Eu concentration (c) and reflectance intensity changes (d) of KNN:0.06Eu by alternating UV irradiation and heat treatment
Fig. 5 Changes of emission spectra (λex=465 nm) of KNN:0.06 Eu ceramics before and after UV irradiation for 3 min (a), luminescence switching ratio (ΔRt) at 615 nm as a function of Eu concentration (b) and ΔRt of KNN:0.06Eu ceramics by alternating UV light irradiation and thermal stimulus for 7 cycles (c)
Fig. 6 Luminescence modulation ratio (ΔRt) as a function of irradiation time under different irradiation wavelengths (a) and schematic diagram of luminescence modulation upon photochromic reactions for KNN:xEu ceramics (VO is oxygen vacancy, and VA is K and Na vacancy) (b)
[1] | WU N M, WONG H L, YAM V W . Photochromic benzo phosphole oxide with excellent thermal irreversibility and fatigue resistance in the thin film solid state via direct attachment of dithienyl units to the weakly aromatic heterocycle. Chemical Science, 2017,8:1309-1315. |
[2] | WANG R G, LU X L, HAO L F , et al. Enhanced and tunable photochromism of MoO3-butylamine organic-inorganic hybrid composites. Journal of Materials Chemistry C, 2017,5:427-433. |
[3] | HADJOUDIS E, MAVRIDIS I M . Photochromism and thermochromism of schiff bases in the solid state: structural aspects. Chemical Society Reviews, 2004,33:579-588. |
[4] | PANG S C, HYUN H, LEE S , et al. Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging. Chemical Communications, 2012,48:3745-3747. |
[5] | ZHANG Y Y, LUO L H, LI K X , et al. Reversible up-conversion luminescence modulation based on UV-Vis light-controlled photochromism in Er3+ doped Sr2SnO4. Journal of Materials Chemistry C, 2018,6:13148-13156. |
[6] | RUSSO M, RIGBY S E J, CASERI W , et al. Pronounced photochromism of titanium oxide hydrates (hydrous TiO2). Journal of Materials Chemistry, 2010,20:1348-1356. |
[7] | NISHIO S, KAKIHANA M . Evidence for visible light photochromism of V2O5. Chemistry Materials, 2002,14:3730-3733. |
[8] | BLACKMAN C S, PARKINARKIN I P . Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties. Chemistry Materials, 2005,17:1583-1590. |
[9] | HOSONO E, FUJIHARA S, KAKIUCH K , et al. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. Journal of the American Chemical Society, 2004,126:7790-7791. |
[10] | ZHANG Q W, YUE S S, SUN H Q , et al. Nondestructive up-conversionreadout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications. Journal of Materials Chemistry C, 2017,5:3838-3847. |
[11] | ZHANG Q W, ZHANG Y Y, SUN H Q , et al. Tunable luminescence contrast of Na0.5Bi4.5Ti4O15:Re (Re=Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers. ACS Applied Matericals & Interfaces, 2016,8:34581-34589. |
[12] | LI K X, LUO L H, ZHANG Y Y , et al. Tunable luminescence contrast in photochromic ceramics (1-x)Na0.5Bi0.5TiO3-xNa0.5K0.5NbO3: 0.002Er by an electric field poling. ACS Applied Matericals & Interfaces, 2018,48:41525-41534. |
[13] | ZHEN Y, LI J F . Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. Journal of the American Chemical Society, 2006,89:3669-3675. |
[14] | SU L K, ZHU K J, BAI L, QIU J H , et al. Effects of Sb-doping on the formation of (K, Na)(Nb, Sb)O3 solid solution under hydrothermal conditions. Journal of Alloys and Compounds, 2010,493:186-191. |
[15] | ZHANG Y Y, LUO L H, LI K X , et al. Up-conversion luminescence switching of (K0.5Na0.5)0.995Er0.005NbO3 ferroelectric ceramic based on photochromic reaction. Ceramics International, 2018,44:1086-1090. |
[16] | LIU J, ZHANG Y, SUN H Q , et al. Reversible up-conversion emission and photo-switching properties in Er doped (K,Na)NbO3 ferroelectrics. Journal of Luminescence, 2019,207:85-92. |
[17] | ZHANG Y Y, LUO L H, LI K X , et al. Large and reversible in-situ up-conversion photoluminescence modulation based on photochromism via electric-field and thermal stimulus in ferroelectrics. Journal of European Ceramic Society, 2018,38:3154-3161. |
[18] | SUN H Q, LIU J, WANG X H , et al. (K, Na)NbO3 ferroelectrics: a new class of solid-state photochromic materials with reversible luminescence switching behavior. Journal of Materials Chemistry C, 2017,5:9080-9087. |
[19] | WANG C L, JIN Y H, LV Y , et al. Reversible luminescence switching and non-destructive optical readout behaviors of Sr3SnMO7:Eu3+(M = , Si, Ge, Ti, Zr, and Hf) driven by photochromism and tuned by partial cation substitution. Sensors and Actuators B: Chemical, 2018,262:289-297. |
[20] | KAMIMURA S, YAMADA H, XU C N . Purple photochromism in Sr2SnO4:Eu 3+ with layered perovskite-related structure . Applied Physics Letters, 2013,102:031110. |
[21] | AKIYAMA M . Blue-green light photochromism in europium doped BaMgSiO4. Applied Physics Letters, 2010,97:181905. |
[22] | WANG J, LUO L H . Probing the diffusion behavior of polymorphic phase transition in K0.5Na0.5NbO3 ferroelectric ceramics by Eu3+ photoluminescence. Journal of Applied Physics, 2018,123:144102. |
[23] | SUN H Q, ZHANG Q W, WANG X S , et al. New red-emitting material K0.5Na0.5NbO3: Eu3+ for white LEDs. Materials Research Bulletin, 2015,64:134-138. |
[24] | GENG Z M, LI K, LI X , et al. Fabrication and photoluminescence of Eu-doped KNN based transparent ceramics. Journal of Materials Science, 2017,52:2285-2295. |
[25] | ZHOU Y, GUO M, ZHANG C , et al. Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic. Ceramics International, 2009,35:3253-3258. |
[26] | ZHANG Y, XU J Y, YANG B B , et al. Luminescence properties and energy migration mechanism of Eu3+ activated Bi4Si3O12 as a potential phosphor for white LEDs. Materials Research Express, 2018,5:026202. |
[27] | WU X, CHUNG T H, KWOK K W . Enhanced visible and mid-IR emissions in Er/Yb-cooped K0.5Na0.5NbO3 ferroelectric ceramics. Ceramics International, 2015,41:14041-14048. |
[28] | SUN H Q, ZHANG Y, LIU JIAN , et al. Reversible upconversion switching for Ho/Yb codoped (K,Na)NbO3 ceramics with excellent luminescence readout capability. Journal of the American Chemical Society, 2018,101:5659-5674. |
[29] | NIKL M . Wide band gap scintillation materials: progress in the technology and material understanding. Physica Status Solidi, 2000,178:595-620. |
[30] | ZHANG Q W, ZHANG Y, SUN H Q , et al. Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics. Journal of European Ceramic Society, 2017,37:955-966. |
[1] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[2] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. |
[3] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[4] | WANG Zhiqiang, WU Ji’an, CHEN Kunfeng, XUE Dongfeng. Large-size Er,Yb:YAG Single Crystal: Growth and Performance [J]. Journal of Inorganic Materials, 2023, 38(3): 329-334. |
[5] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[6] | GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor [J]. Journal of Inorganic Materials, 2022, 37(6): 676-682. |
[7] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[8] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. |
[9] | ZHANG Cong, LI Yurou, SHAO Kang, LIN Jing, WANG Kai, PAN Zaifa. Luminescence Property of the Multicolor Persistent Luminescence Materials for Dynamic Anti-counterfeiting Applications [J]. Journal of Inorganic Materials, 2021, 36(12): 1256-1262. |
[10] | PENG Yuehong,REN Weizhou,QIU Jianbei,HAN Jin,YANG Zhengwen,SONG Zhiguo. Upconversion Luminescence and Temperature Sensing Properties of Layered BiOCl: Er3+ under 1550 nm Excitation [J]. Journal of Inorganic Materials, 2020, 35(8): 902-908. |
[11] | ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke. High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation [J]. Journal of Inorganic Materials, 2020, 35(4): 491-496. |
[12] | CHEN Lei, CHEN Lanhua, ZHANG Yugang, XIE Jian, DIWU Juan. A Layered Uranyl Coordination Polymer with UV Detection Sensitivity, Stability, and Reusability [J]. Journal of Inorganic Materials, 2020, 35(12): 1391-1397. |
[13] | WANG Kai, YAN Li-Ping, SHAO Kang, ZHANG Cong, PAN Zai-Fa. Near-infrared Afterglow Enhancement and Trap Distribution Analysis of Silicon-chromium Co-doped Persistent Luminescence Materials Zn1+xGa2-2xSixO4:Cr3+ [J]. Journal of Inorganic Materials, 2019, 34(9): 983-990. |
[14] | YANG Jin-Ping, JI Wen-Ling, ZHANG Hao, LIU Pan, CUI Yi, WEI Heng-Yong. Preparation and Luminescence Property of Eu 3+ Doped Porous Lanthanum Zirconate Powder [J]. Journal of Inorganic Materials, 2019, 34(7): 727-733. |
[15] | Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure [J]. Journal of Inorganic Materials, 2019, 34(6): 590-598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||