Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (2): 221-228.DOI: 10.15541/jim20170394
• Orginal Article • Previous Articles Next Articles
LI Yong-Sheng, CHEN Ling
Received:
2017-08-14
Revised:
2017-10-31
Published:
2018-02-26
Online:
2018-01-26
CLC Number:
LI Yong-Sheng, CHEN Ling. Controlled Synthesis of Gold-based Magnetic Nanocomposites and Their Catalytic Performance[J]. Journal of Inorganic Materials, 2018, 33(2): 221-228.
Fig. 5 STEM image of MCN-Au (2 nm) nanocomposites (a); scanning mapping of Au elements (b1), Fe elements (b2) and S elements (b3). Scale bar is 100 nm; (c) EDS pattern of MCN- Au (2 nm)
Fig. 7 UV-Vis spectra of (a) MCN-Au (2 nm) (black curve) and (b) MCN-Au (6 nm) (red curve) The insets are the digital photos of MCN-Au (2 nm) and MCN-Au (6 nm)
Fig. 8 Room-temperature magnetization hysteresis loops of the Fe3O4 nanoparticles, MCN, MCN-Au (2 nm), and MCN-Au (6 nm) The inset is a photograph of the MCN-Au (2 nm) under an external magnetic field
Fig. 10 Curves of (a) Ct/C0 and (b) ln(Ct/C0) versus the reaction time for the reduction of 4-NP over MCN-Au; the reusability of the (c) MCN-Au (2 nm) and (d) MCN-Au (6 nm)
[1] | MA G, BINDER A, CHI M, et al.Stabilizing gold clusters by heterostructured transition-metal oxide-mesoporous silica supports for enhanced catalytic activities for CO oxidation.Chemical Communications, 2012, 48(93): 11413-11415. |
[2] | BARAKAT T, ROOKE J C, GENTY E, et al.Gold catalysts in environmental remediation and water-gas shift technologies.Energy & Environmental Science, 2013, 6(2): 371-391. |
[3] | OLIVEIRA R L, KIYOHARAB P K, ROSSI L M.High performance magnetic separation of gold nanoparticles for catalytic oxidation of alcohols.Green Chemistry, 2010, 12(1): 144-149. |
[4] | LIN F H, DOONG R A.Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction.The Journal of Physical Chemistry C, 2011, 115(14): 6591-6598. |
[5] | CUI Y L, CHEN H F, TANG D P, et al.Au(III)-promoted polyaniline gold nanospheres with electrocatalytic recycling of self-produced reactants for signal amplification.Chemical Communications, 2012, 48(83): 10307-10309. |
[6] | NDOKOYE P, LI X Y, ZHAO Q D, et al.Gold nanostars: benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity.Journal of Colloid & Interface Science, 2016, 462: 341-350. |
[7] | GATES B C.Supported gold catalysts: new properties offered by nanometer and sub-nanometer structures.Chemical Communications, 2013, 49(72): 7876-7877. |
[8] | TAKALE B S, BAO M, YAMAMOTO Y.Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.Organic & Biomolecular Chemistry, 2014, 12(13): 2005-2027. |
[9] | KULKARNI A, LOBO-LAPIDUS R J, GATES B C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties.Chemical Communications, 2010, 46(33): 5997-6015. |
[10] | LIU G Y, JI H F, YANG X L, et al.Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core.Langmuir, 2008, 24(3): 1019-1025. |
[11] | YUAN C H, LUO W A, ZHONG L N, et al.Gold@polymer nanostructures with tunable permeability shells for selective catalysis.Angewandte Chemie International Edition, 2011, 50(15): 3515-3519. |
[12] | LIU Y C, LI M L, CHEN G F.A new type of raspberry-like polymer composite submicrospheres with tunable gold nanoparticles coverage and their enhanced catalytic properties.Journal of Materials Chemistry A, 2013, 1(3): 930-937. |
[13] | SONG W, FERRANDEZ D M P, HAANDEL L V, et al. Selective propylene oxidation to acrolein by gold dispersed on MgCuCr2O4 spinel.ACS Catalysis, 2015, 5(2): 1100-1111. |
[14] | LI Z X, XUE W, GUAN B T, et al.A conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter.Nanoscale, 2013, 5(3): 1213-1220. |
[15] | BEHL M, JAIN P K.Catalytic activation of a solid oxide in electronic contact with gold nanoparticles.Angewandte Chemie International Edition, 2015, 54(3): 992-997. |
[16] | ZHU C Z, HAN L, HU P, et al.Loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties.Nanoscale, 2012, 4(5): 1641-1646. |
[17] | LI J, LIU C Y, LIU Y.Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol.Journal of Materials Chemistry, 2012, 22(17): 8426-8430. |
[18] | ZHANG Z Y, SHAO C L, ZOU P, et al.In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol.Chemical Communications, 2011, 47(13): 3906-3908. |
[19] | WANG D W, ZHU X M, LEE S F, et al.Folate-conjugated Fe3O4@SiO2@gold nanorods@mesoporous SiO2 hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy.Journal of Materials Chemistry B, 2013, 1(23): 2934-2942. |
[20] | WANG Z H, FU H F, HAN D M, et al.The effects of Au species and surfactant on the catalytic reduction of 4-nitrophenol by Au@SiO2.Journal of Materials Chemistry A, 2014, 2(47): 20374-20381. |
[21] | MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts.Chemical Reviews, 2015, 115(14): 6687-6718. |
[22] | GAWANDE M B, GOSWAMI A, ASEFA T, et al.Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis.Chemical Society Reviews, 2015, 44(21): 7540-7590. |
[23] | SHYLESH S, SCHÜNEMANN V, THIEL W R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis.Angewandte Chemie International Edition, 2010, 49(20): 3428-3459. |
[24] | LIU J, QIAO S Z, HU Q H, et al.Magnetic nanocomposites with mesoporous structures: synthesis and applications.Small, 2011, 7(4): 425-443. |
[25] | WANG D, ASTRUC D.Fast-growing field of magnetically recyclable nanocatalysts.Chemical Reviews, 2014, 114(14): 6949-6985. |
[26] | WANG L Y, LUO J, FAN Q, et al.Monodispersed core-shell Fe3O4@Au nanoparticles.Journal of Physical Chemistry B, 2005, 109(46): 21593. |
[27] | RAHMAN Z U, DONG Y L, SU L, et al.Mesostructured multifunctional magnetic nanocomposites for potential applications.Chemical Engineering Journal, 2013, 222(15): 382-390. |
[28] | ZHU Y H, SHEN J H, ZHOU K F, et al.Multifunctional magnetic composite microspheres with in situ growth Au nanoparticles: a highly efficient catalyst system.Journal of Physical Chemistry C, 2011, 115(5): 1614-1619. |
[29] | LIN F H, DOONG R A.Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts.Applied Catalysis A General, 2014, 486: 32-41. |
[30] | YAO T J, CUI T Y, WANG H, et al.A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye.Nanoscale, 2014, 6(13): 7666-7674. |
[31] | XUAN S H, WANG Y X, YU J C, et al.Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites.Langmuir, 2009, 25(19): 11835-11843. |
[32] | WANG C, CHEN J, ZHOU X, et al.Magnetic yolk-shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts.Nano Research, 2015, 8(1): 238-245. |
[33] | ZENG T, ZHANG X L, WANG S H, et al.A double-shelled yolk-like structure as an ideal magnetic support of tiny gold nanoparticles for nitrophenol reduction.Journal of Materials Chemistry A, 2013, 1(38): 11641-11647. |
[34] | ZHENG J M, DONG Y L, WANG W F, et al.In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity.Nanoscale, 2013, 5(11): 4894-4901. |
[35] | ZHU X Y, GU J L, LI Y S, et al.Magnetic core-mesoporous shell nanocarriers with drug anchorages suspended in mesopore interior for cisplatin delivery.Microporous & Mesoporous Materials, 2014, 196: 115-121. |
[36] | DONG W J, LI Y S, NIU D C, et al.Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy.Advanced Materials, 2011, 23(45): 5392-5397. |
[37] | DONG W J, LI Y S, NIU D C, et al.A simple route to prepare monodisperse Au NP-decorated, dye-doped, superparamagnetic nanocomposites for optical, MR, and CT trimodal imaging.Small, 2013, 9(15): 2500-2508. |
[38] | GAO Y P, GU J L, LI L, et al.Synthesis of gold nanoshells through improved seed-mediated growth approach: brust-like, in situ seed formation.Langmuir, 2016, 32(9): 2251-2258. |
[39] | ZHAI Y G, DONG W J, GAO Y P, et al.Preparation of superparamagnetic gold nanocomposites with different diameters and their imaging and therapy applications.Journal of Inorganic Materials, 2015, 30(9): 951-955. |
[40] | LIU G Q, WANG D A, ZHOU F, et al.Electrostatic self-assembly of Au nanoparticles onto thermosensitive magnetic core-shell microgels for thermally tunable and magnetically recyclable catalysis.Small, 2015, 11(23): 2807-2816. |
[41] | GU S S, WUNDER S, LU Y, et al.Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles.Journal of Physical Chemistry C, 2014, 118(32): 18618-18625. |
[42] | WUNDER S, LU Y, ALBRECHT M, et al.Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring.ACS Catalysis, 2011, 1(8): 908-916. |
[43] | HVOLBÆK B, JANSSENS T V W, CLAUSEN B S, et al. Catalytic activity of Au nanoparticles.Nano Today, 2007, 2(4): 14-18. |
[44] | SHIVHARE A, AMBROSE S J, ZHANG H, et al.Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol.Chemical Communications, 2013, 49(3): 276-278. |
[45] | CAO J, MEI S L, JIA H, et al.In situ synthesis of catalytic active Au nanoparticles onto gibbsite-polydopamine core-shell nanoplates.Langmuir, 2015, 31(34): 9483-9491. |
[46] | WOO H, KANG H P.Hybrid Au nanoparticles on Fe3O4 @polymer as efficient catalyst for reduction of 4-nitrophenol.Catalysis Communications, 2014, 46(5): 133-137. |
[47] | LIN F H, DOONG R A.Catalytic nanoreactors of Au@Fe3O4 yolk-shell nanostructures with various Au sizes for efficient nitroarenes reduction.Journal of Physical Chemistry C, 2017, 121(14): 7844-7853. |
[48] | WANG Y, LI H, ZHANG J J, et al.Fe3O4 and Au nanoparticles dispersed on the graphene support as a highly active catalyst toward the reduction of 4-nitrophenol.Physical Chemistry Chemical Physics, 2016, 18(1): 615-623. |
[1] | WANG Jun, ZHANG Bao-Lin, YANG Gao, WANG Lei, XIE Song-Bo, LI Xuan, GAO Fa-Bao. Synthesis and Application of Magnetic Iron Oxide Nanoparticles as High Efficiency Magnetic Resonance Imaging Contrast Agent [J]. Journal of Inorganic Materials, 2015, 30(1): 53-58. |
[2] | ZENG Xiao-Bo, HU Hao, XIE Li-Qin, LAN Fang, WU Yao, GU Zhong-Wei. Preparation and Properties of Supermagnetic Calcium Phosphate Composite Scaffold [J]. Journal of Inorganic Materials, 2013, 28(1): 79-84. |
[3] |
CHEN Jin.
High Temperature Polyol Synthesis of Superparamagnetic CoFe2O4 Nanoparticles for Magnetic Resonance Imaging Contrast Agents [J]. Journal of Inorganic Materials, 2009, 24(5): 967-972. |
[4] | JIANG Wen,WEN Xian-Tao,WANG Wei,WU Yao,GU Zhong-Wei. Study on the Synthesis and Properties of Superparamagnetic Monodisperse Fe3O4 Nanoparticles [J]. Journal of Inorganic Materials, 2009, 24(4): 727-731. |
[5] | YANG Yu-Dong,LIANG Yong,SONG Zhi-Xia,XIAN Quan-Gang. Influence of Preparation Parameters and Characterization of Nano-compound Superparamagnetic Iron Oxide Particle in Dextran System [J]. Journal of Inorganic Materials, 2005, 20(1): 225-229. |
[6] | MA Wen-Zhe,QIAN Xue-Feng,YIN Jie,ZHU Zi-Kang. Preparation and Characterization of Hollow Superparamagnetic Fe3O4 Nanospheres [J]. Journal of Inorganic Materials, 2004, 19(6): 1407-1410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||