Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (1): 65-70.DOI: 10.15541/jim20140212
• Orginal Article • Previous Articles Next Articles
CHEN Dan1, WANG Yu1, BAI Yu1, WANG Yun-Hui2, ZHAO Lei1, Fu Qian-Qian1, WANG Hai-Jun3, HAN Zhi-Hai1
Received:2014-04-24
															
							
																	Revised:2014-06-24
															
							
															
							
																	Published:2015-01-20
															
							
																	Online:2014-12-29
															
						About author:CHEN Dan. E-mail: dandan0408@stu.xjtu.edu.cn				
													Supported by:CLC Number:
CHEN Dan, WANG Yu, BAI Yu, WANG Yun-Hui, ZHAO Lei, Fu Qian-Qian, WANG Hai-Jun, HAN Zhi-Hai. Effect of Reynolds Number of Molten Particle on Splat Formation in Plasma Spraying[J]. Journal of Inorganic Materials, 2015, 30(1): 65-70.
| Spray methods  |  Ar /slpm  |  H2 /slpm  |  Power P/kW  |  Voltage U/V  |  Current I/A  |  Spray distance D/mm  |  Feed rate /(g?min-1)  |  Temperature T/℃  |  Velocity v/(m?s-1)  |  
|---|---|---|---|---|---|---|---|---|---|
| SAPS | 70.5 | 22 | 68.6 | 138 | 497 | 110 | 35 | 2919.0±2.0 | 505.0±3.8 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 90 | 35 | 2813.9±2.5 | 484.5±9.3 | 
| SAPS | 60.3 | 15 | 44.5 | 125 | 356 | 90 | 35 | 2685.4±2.7 | 464.5±3.0 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 80 | 35 | 2680.0±14.7 | 544.5±13.5 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 100 | 35 | 3066.4±10.1 | 544.2±13.0 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 120 | 35 | 3196.4±10.1 | 584.4±28.0 | 
| APS | 32.9 | 8.225 | 44.0 | 67.6 | 650 | 90 | 38.4 | 2804.4±5.4 | 224.0±5.1 | 
| APS | 42.3 | 10.575 | 44.0 | 71.4 | 611 | 90 | 38.4 | 2740.2±3.7 | 231.0±4.2 | 
| APS | 51.7 | 12.925 | 44.0 | 75.6 | 585 | 90 | 38.4 | 2683.6±4.5 | 233.3±3.6 | 
| APS | 47.0 | 11.750 | 48.0 | 74.0 | 650 | 80 | 38.4 | 2680.0±3.3 | 238.5±3.1 | 
| APS | 47.0 | 11.750 | 48.0 | 74.0 | 650 | 100 | 38.4 | 2934.1±4.2 | 244.0±3.1 | 
| APS | 47.0 | 11.750 | 48.0 | 74.0 | 650 | 120 | 38.4 | 2804.7±5.1 | 226.5±2.3 | 
Table 1 Spraying parameters
| Spray methods  |  Ar /slpm  |  H2 /slpm  |  Power P/kW  |  Voltage U/V  |  Current I/A  |  Spray distance D/mm  |  Feed rate /(g?min-1)  |  Temperature T/℃  |  Velocity v/(m?s-1)  |  
|---|---|---|---|---|---|---|---|---|---|
| SAPS | 70.5 | 22 | 68.6 | 138 | 497 | 110 | 35 | 2919.0±2.0 | 505.0±3.8 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 90 | 35 | 2813.9±2.5 | 484.5±9.3 | 
| SAPS | 60.3 | 15 | 44.5 | 125 | 356 | 90 | 35 | 2685.4±2.7 | 464.5±3.0 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 80 | 35 | 2680.0±14.7 | 544.5±13.5 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 100 | 35 | 3066.4±10.1 | 544.2±13.0 | 
| SAPS | 75.0 | 21 | 58.5 | 124 | 472 | 120 | 35 | 3196.4±10.1 | 584.4±28.0 | 
| APS | 32.9 | 8.225 | 44.0 | 67.6 | 650 | 90 | 38.4 | 2804.4±5.4 | 224.0±5.1 | 
| APS | 42.3 | 10.575 | 44.0 | 71.4 | 611 | 90 | 38.4 | 2740.2±3.7 | 231.0±4.2 | 
| APS | 51.7 | 12.925 | 44.0 | 75.6 | 585 | 90 | 38.4 | 2683.6±4.5 | 233.3±3.6 | 
| APS | 47.0 | 11.750 | 48.0 | 74.0 | 650 | 80 | 38.4 | 2680.0±3.3 | 238.5±3.1 | 
| APS | 47.0 | 11.750 | 48.0 | 74.0 | 650 | 100 | 38.4 | 2934.1±4.2 | 244.0±3.1 | 
| APS | 47.0 | 11.750 | 48.0 | 74.0 | 650 | 120 | 38.4 | 2804.7±5.1 | 226.5±2.3 | 
| Property of YSZ | Value | Property of YSZ | Value | 
|---|---|---|---|
| Density | 5890 kg/m³ | Solidus temperature | 2923.13 K | 
| Specific heat | 713 J/( kg?K) | Liquidus temperuture | 3023.13 K | 
| Thermal conductivity | 2.32 W/(m?K) | Thermal contact resistance | 10-6 m2?K/W | 
| Viscosity | 0.008 kg/( m?s) | Surface tension | 0.43 N/m | 
| Molecular weight | 123 | Property of substrate | Value | 
| Standard state enthalpy | -11.006×108 J/mol | Density | 8400 kg/m³ | 
| Reference temperature | 298.15 K | Specific heat | 575 J/( kg?K) | 
| Melting heat | 7.07×105 J/kg | Thermal conductivity | 18.779 W/( m?K) | 
Table 2 Properties of YSZ and stainless steel substrate[12-18]
| Property of YSZ | Value | Property of YSZ | Value | 
|---|---|---|---|
| Density | 5890 kg/m³ | Solidus temperature | 2923.13 K | 
| Specific heat | 713 J/( kg?K) | Liquidus temperuture | 3023.13 K | 
| Thermal conductivity | 2.32 W/(m?K) | Thermal contact resistance | 10-6 m2?K/W | 
| Viscosity | 0.008 kg/( m?s) | Surface tension | 0.43 N/m | 
| Molecular weight | 123 | Property of substrate | Value | 
| Standard state enthalpy | -11.006×108 J/mol | Density | 8400 kg/m³ | 
| Reference temperature | 298.15 K | Specific heat | 575 J/( kg?K) | 
| Melting heat | 7.07×105 J/kg | Thermal conductivity | 18.779 W/( m?K) | 
| Sample | Spray  methods  |  Temperature  /℃  |  Velocity /(m·s-1)  |  Original  diameter /μm  |  Re | We | Oh | Splashing or not | 
|---|---|---|---|---|---|---|---|---|
| 1 | SAPS | 2680.0 | 544.5 | 6.0 | 414.7 | 2.44×104 | 0.376 | No | 
| 2 | SAPS | 2680.0 | 544.5 | 7.5 | 518.4 | 3.05×104 | 0.337 | Yes | 
| 3 | SAPS | 3066.4 | 544.2 | 6.8 | 563.5 | 2.76×104 | 0.294 | Yes | 
| 4 | SAPS | 3066.4 | 544.2 | 5.0 | 414.1 | 2.03×104 | 0.342 | No | 
| 5 | SAPS | 3196.4 | 584.4 | 5.0 | 469.0 | 2.34×104 | 0.326 | No | 
| 6 | SAPS | 3196.4 | 584.4 | 6.4 | 600.3 | 2.99×104 | 0.288 | Yes | 
| 7 | APS | 2680.0 | 238.5 | 14.5 | 439.0 | 1.13×104 | 0.241 | Yes | 
| 8 | APS | 2934.1 | 244.0 | 16.5 | 578.4 | 1.35×104 | 0.200 | Yes | 
| 9 | APS | 2934.1 | 244.0 | 15.6 | 546.8 | 1.27×104 | 0.206 | No | 
| 10 | APS | 2804.7 | 226.5 | 17.9 | 549.0 | 1.26×104 | 0.204 | Yes | 
Table 3 Parameters of YSZ splats in different spraying processes
| Sample | Spray  methods  |  Temperature  /℃  |  Velocity /(m·s-1)  |  Original  diameter /μm  |  Re | We | Oh | Splashing or not | 
|---|---|---|---|---|---|---|---|---|
| 1 | SAPS | 2680.0 | 544.5 | 6.0 | 414.7 | 2.44×104 | 0.376 | No | 
| 2 | SAPS | 2680.0 | 544.5 | 7.5 | 518.4 | 3.05×104 | 0.337 | Yes | 
| 3 | SAPS | 3066.4 | 544.2 | 6.8 | 563.5 | 2.76×104 | 0.294 | Yes | 
| 4 | SAPS | 3066.4 | 544.2 | 5.0 | 414.1 | 2.03×104 | 0.342 | No | 
| 5 | SAPS | 3196.4 | 584.4 | 5.0 | 469.0 | 2.34×104 | 0.326 | No | 
| 6 | SAPS | 3196.4 | 584.4 | 6.4 | 600.3 | 2.99×104 | 0.288 | Yes | 
| 7 | APS | 2680.0 | 238.5 | 14.5 | 439.0 | 1.13×104 | 0.241 | Yes | 
| 8 | APS | 2934.1 | 244.0 | 16.5 | 578.4 | 1.35×104 | 0.200 | Yes | 
| 9 | APS | 2934.1 | 244.0 | 15.6 | 546.8 | 1.27×104 | 0.206 | No | 
| 10 | APS | 2804.7 | 226.5 | 17.9 | 549.0 | 1.26×104 | 0.204 | Yes | 
| [1] | PADTURE N P, GELL M, JORDAN E H.Thermal barrier coatings for gas-turbine engine applications.Science, 2002, 296(5566): 280-284. | 
| [2] | PEREPEZKO J H.The hotter the engine, the better.Science, 2009, 326(5956): 1068-1069. | 
| [3] | HAN Z H, XU B S, WANG H J, et al.A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2-Y2O3-ZrO2 graded thermal barrier coatings. Surf. Coat. Technol., 2007, 201(9/10/11): 5253-5256. | 
| [4] | DU L Z, XU B S, DONG S J, et al.Sliding wear behavior of the supersonic plasma sprayed WC-Co coating in oil containing sand.Surf. Coat. Technol., 2008, 202(15): 3709-3714. | 
| [5] | ZHANG X C, XU B S, TU S T, et al.Effect of spraying power on the microstructure and mechanical properties of supersonic plasma- sprayed Ni-based alloy coatings.Appl. Surf. Sci., 2008, 254(20): 6318-6326. | 
| [6] | ZHANG X C, XU B S, WU Y X, et al.Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates.Appl. Surf. Sci., 2008, 254(13): 3879-3889. | 
| [7] | BAI Y, HAN Z H, LI H Q, et al.Structure-property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings.Surf. Coat. Technol., 2011, 205(13/14): 3833-3839. | 
| [8] | BAI Y, HAN Z H, LI H Q, et al.High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying.Appl. Surf. Sci., 2011, 257(16): 7210-7216. | 
| [9] | YOKOI K.Numberical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle.Soft Matter, 2011, 7(11): 5120-5123. | 
| [10] | PASANDIDEH-FARD M, PERSHIN V SCHANDRA. Splat shapes in a thermal spray coating process: simulations and experiments.J. Therm. Spray Technol., 2002, 11(2): 206-217. | 
| [11] | BOBZIN K, BAGCIVAN N, PARKOT D.Simulation of PYSZ particle impact and solidification in atmospheric plasma spraying coating process.Surf. Coat. Technol., 2010, 204(8): 1211-1215. | 
| [12] | XIONG H B.Melting and oxidation behavior of in-flight particles in plasma spray process.Int. J. Heat Mass Transfer, 2005, 48(25/26): 5121-5133. | 
| [13] | LI L.Particle characterization and splat formation of plasma sprayed zirconia. J. Therm. Spray Technol., 2006, 15(1): 97-105. | 
| [14] | BERTAGNOLL M.Modeling of particles impacting on a rigid substrate under plasma spraying conditions.J. Therm. Spray Technol., 1995, 4(1): 41-49. | 
| [15] | KANG C W.Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying.Appl. Surf. Sci., 2011, 257(24): 10363-10372. | 
| [16] | BRANDON J R.Phase stability of zirconia-based thermal barrier coatings. Part I. Zirconia-yttria alloys.Surf. Coat. Technol., 1991, 46(1): 75-90. | 
| [17] | ANDRE M.Thermal contact resistance between plasma-sprayed particles and flat surfaces.Int. J. Heat Mass Transfer, 2007, 50(9/10): 1737-1749. | 
| [18] | PASANDIDEH-FARD M.On the Spreading and solidification of molten particles in a plasma spray process: effect of thermal contact resistance.Plasma Chem. Plasma Process., 1996, 16(1): 83s-98s. | 
| [19] | FUKUMOTO M, HUANG Y.Flattening mechanism in thermal sprayed nickel particle impinging on flat substrate surface.J. Therm. Spray Technol., 1999, 8(3): 427-432. | 
| [20] | ZHAO W T, WU J H, BAI Y, et al.Melting refining mechanisms in supersonic atmospheric plasma spraying.Plasma Chem. Plasma Process., 2012, 32(6): 1227-1242. | 
| [21] | MADEJESKI J.Solidification of droplets on a cold surface. Int. J. Heat Mass Transfer., 1976, 19: 1009-1013. | 
| [22] | YOSHIDA T, OKADA T, HAMATAMI H, et al.Integrated fabrication process for solid oxide fuel cells using novel plasma spraying.Plasma. Sources Sci. Technol., 1992, 1: 195-201. | 
| [23] | LIU H, LAVERNIA E, RANGEL R.Numerical simulation of impingement of molten Ti, Ni, and W droplets on a flat substrate.J. Therm. Spray Technol., 1993, 2(4): 369-378. | 
| [1] | MA Wen, SHEN Zhe, LIU Qi, GAO Yuanming, BAI Yu, LI Rongxing. Preparation of Y2O3 Coating by Suspension Plasma Spraying and Its Resistance to Plasma Etching [J]. Journal of Inorganic Materials, 2024, 39(8): 929-936. | 
| [2] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. | 
| [3] | DAI Zhao,WANG Ming,WANG Shuang,LI Jing,CHEN Xiang,WANG Da-Lin,ZHU Ying-Chun. Zirconia Reinforced Trace Element Co-doped Hydroxyapatite Coating [J]. Journal of Inorganic Materials, 2020, 35(2): 179-186. | 
| [4] | Yan-Zhe ZHOU, Min LIU, Kun YANG, Wei ZENG, Jin-Bing SONG, Chun-Ming DENG, Chang-Guang DENG. Microstructure and Property of MoSi2-30Al2O3 Electrothermal Coating Prepared by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2019, 34(6): 646-652. | 
| [5] | CHEN Shu-Ying, MA Guo-Zheng, HE Peng-Fei, LIU Zhe, LIU Ming, XING Zhi-Guo, WANG Hai-Dou, WANG Hai-Jun. Pore Formation Mechanism of WC-10Co4Cr Coatings Based on Collected In-flight Particles and Individual Splat [J]. Journal of Inorganic Materials, 2018, 33(8): 895-902. | 
| [6] | LI Da-Chuan, ZHAO Hua-Yu, ZHONG Xing-Hua, TAO Shun-Yan. Research Progresses of Atmospheric Plasma Sprayed Splat [J]. Journal of Inorganic Materials, 2017, 32(6): 571-580. | 
| [7] | SUN Xu-Xuan, CHEN Hong-Fei, YANG Guang, LIU Bin, GAO Yan-Feng. YSZ- Ti3AlC2 Thermal Barrier Coating and Its Self-healing Behavior under High Temperatures [J]. Journal of Inorganic Materials, 2017, 32(12): 1269-1274. | 
| [8] | YU Fang-Li, BAI Yu, WU Xiu-Ying, Wang Hai-Jun, WU Jiu-Hui. Corrosion Resistance and Anti-wear Property of Nickel Based Abradable Sealing Coating Deposited by Plasma Spraying [J]. Journal of Inorganic Materials, 2016, 31(7): 687-693. | 
| [9] | MAO Jin-Yuan, LIU Min, MAO Jie, DENG Chun-Min, ZENG De-Chang, XU Lin. Oxidation-resistance of ZrB2-MoSi2 Composite Coatings Prepared by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2015, 30(3): 282-286. | 
| [10] | WANG Liu-Ying, XU Zhuo, HUA Shao-Chun, LIU An-Min, GUO Qin, LIU Gu. Raman Spectroscopy and Microwave Absorbing Properties of CNTs/Al2O3-TiO2 Composite Absorbing Coatings with Different Diameters [J]. Journal of Inorganic Materials, 2013, 28(2): 136-140. | 
| [11] | YANG Jia-Sheng, YU Jian-Hua, ZHONG Xing-Hua, ZHAO Hua-Yu, ZHOU Xia-Ming, TAO Shun-Yan, DING Chuan-Xian. Experimental and Numerical Investigation of Residual Stresses in Plasma-sprayed Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2013, 28(12): 1381-1386. | 
| [12] | LU Xue-Cheng, YAN Dian-Ran, YANG Yong, HE Ji-Ning, ZHANG Jian-Xin, DONG Yan-Chun. Bimodal Distribution of Microstructure and Mechanical Properties of Plasma Sprayed Nanostructured Al2O3-13wt% TiO2 Coatings [J]. Journal of Inorganic Materials, 2011, 26(9): 1003-1008. | 
| [13] | YU Jian-Hua, ZHAO Hua-Yu, ZHOU Xia-Ming, TAO Shun-Yan, DING Chuan-Xian. Microstructure and Properties of Air Plasma Sprayed Sm2Zr2O7 Coatings [J]. Journal of Inorganic Materials, 2011, 26(7): 696-700. | 
| [14] | LIU Gu, WANG Liu-Ying, CHEN Gui-Ming, WEI Wan-Ning, HUA Shao-Chun, ZHU Er-Lei. Preparation and Properties of SiC-CNTs/Al2O3-TiO2 Coating [J]. Journal of Inorganic Materials, 2011, 26(11): 1187-1192. | 
| [15] | WU Zhi-Hong, ZHOU Wan-Cheng, LUO Fa, ZHU Dong-Mei. Mechanical and Dielectric Properties of Ni/Al2O3 Composite Coatings Prepared by the Axial Plasma Spraying [J]. Journal of Inorganic Materials, 2011, 26(10): 1063-1067. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||