[1] Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part II. Engineering, technology development and application aspects. J. Power Sources, 2001, 102(1/2): 253–269.[2] Ding D, Liu Z B, Li L, et al. An octane-fueled low temperature solid oxide fuel cell with Ru-free anodes. Electrochem. Commun., 2008, 10(9): 1295–1298.[3] Levy V, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science, 1973, 181: 547–549.[4] Hwu H H, Polizzotti B D, Chen J G G. Potential application of tungsten carbides as electrocatalysts. 2. Coadsorption of CO and H2O on carbide-modified W(111). J. Phys. Chem. B, 2001, 105(41): 10045–10053.[5] McIntyre D R, Burstein G T, Vossen A. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. J. Power Sources, 2002, 107(1): 67–73.[6] Ganesan R, Ham D J, Lee J S. Platinized mesoporous tungsten carbide for electrochemical methanol oxidation. Electrochem. Commun., 2007, 9(10): 2576–2579.[7] Chhina H, Campbell S, Kesler O. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. J. Power Sources, 2008, 179(1): 50–59.[8] Hara Y, Minami N, Matsumoto H, et al. New synthesis of tungsten carbide particles and the synergistic effect with Pt metal as a hydrogen oxidation catalyst for fuel cell applications. Appl. Catal. a-Gen, 2007, 332(2): 289–296.[9] Chhina H, Campbell S, Kesler O. Thermal and electrochemical stability of tungsten carbide catalyst supports. J. Power Sources, 2007, 164(2): 431–440.[10] Brady C D A, Rees E J, Burstein G T. Electrocatalysis by nanocrystalline tungsten carbides and the effects of codeposited silver. J. Power Sources, 2008, 179(1): 17–26.[11] Hara Y, Minami N, Itagaki H. Synthesis and characterization of high-surface area tungsten carbides and application to electrocatalytic hydrogen oxidation. Appl. Catal. a-Gen., 2007, 323(3): 86–93.[12] Ham D J, Ganesan R, Lee J S. Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water. Int. J. Hydrogen. Energ., 2008, 33(23): 6865–6872.[13] SHENG Jiang-Feng, MA Chun-An, ZHANG Cheng, et al. Preparation of tungsten carbide-supported nano platinum catalyst and electrocatalytic activity for hydrogen evolution. Acta Phys. Chim. Sin., 2007, 23(2): 181–186.[14] CHEN Zhao-Yang, ZHAO Feng-Ming, MA Chun-An, et al. Paration and nitrobenzene electro-reduction performance of tungsten carbide supported platiunm catalysts. J. Chem. Ind. Eng., 2008, 59(12): 75–79.[15] Ahmadi R, Amini M K. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation. International Journal of Hydrogen Energy, 2011, 36(12): 7275–7283.[16] Su F B, Poh C K, Tian Z G, et al. Electrochemical behavior of Pt nanoparticles supported on meso-and microporous carbons for fuel cells. Energy & Fuels, 2010, 24: 3727–3732.[17] Muthuraman N, Guruvaiah P K, Agneeswara P G. High performance carbon supported Pt-WO3 nanocomposite electroca talysts for polymer electrolyte membrane fuel cell. Mater. Chem. Phys., 2012, 133(2/3): 924–931.[18] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today, 1997, 38(4): 445–457.[19] Lovic J. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media. J. Serb. Chem. Soc., 2007, 72(7): 709–712.[20] Mu Y Y, Liang H P, Hu J S, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B, 2005, 109(47): 22212– 22216.[21] Shen P K, Chen K Y, Tseung A C C. Co-deposited Pt-WO3 electrodes.1. methanol oxidation and in-situ ftir studies. J. Chem. Soc. Faraday T, 1994, 90(20): 3089–3096.[22] Shen P K, Tseung A C C. Anodic-oxidation of methanol on Pt/WO3 in acidic media. J. Electrochem. Soc., 1994, 141(11): 3082–3090.[23] Chen K Y, Shen P K, Tseung A C C. Anodic-oxidation of formic-acid on electrodeposited Pt/WO3 electrode at room- temperature. J. Electrochem. Soc., 1995, 142(4): L54–L56. |