Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (4): 439-444.DOI: 10.3724/SP.J.1077.2012.11705
• Orginal Article • Previous Articles Next Articles
FANG Ai-Hua1, XIE Xiao-Ming2, HUANG Fu-Qiang1, JIANG Mian-Heng2
Received:
2011-11-14
Published:
2012-04-10
Online:
2012-03-12
About author:
FANG Ai-Hua(1978-), male, candidate of PhD. E-mail: fah@mail.sic.ac.cn
Supported by:
CLC Number:
FANG Ai-Hua, XIE Xiao-Ming, HUANG Fu-Qiang, JIANG Mian-Heng. High Upper Critical Field of Sm0.85Nd0.15FeAsO0.85F0.15 Superconductors by Mechanical Alloying Synthesis[J]. Journal of Inorganic Materials, 2012, 27(4): 439-444.
Add to citation manager EndNote|Ris|BibTeX
Sample | Tc /K | -dH90%/dT (T·K-1) | Hc2 / T | ρ300K/ (mΩ·cm) | RRR | FWHM(102)/(°) |
---|---|---|---|---|---|---|
1193 K-40 h | 50.1 | 10.8 | 375 | 4.71 | 4.0 | / |
1253 K-20 min | 51.4 | 10.2 | 363 | 2.44 | 3.8 | 0.108 |
1253 K-2 h | 51.3 | 10.6 | 377 | 2.66 | 4.1 | 0.099 |
1253 K-12 h | 51.9 | 10.2 | 367 | 1.99 | 4.3 | 0.092 |
1253 K-40 h | 50.3 | 10.3 | 359 | 1.05 | 4.1 | 0.075 |
1433 K-20 min | 49.0 | 8.7 | 295 | 2.90 | 3.6 | / |
1433 K-2 h | 50.1 | 8.0 | 278 | 4.53 | 3.5 | 0.085 |
1433 K-40 h | 50.4 | 7.7 | 272 | 0.47 | 3.8 | 0.070 |
1253 K-2 h* | 46.9 | 7.1 | 215 | 5.55 | 3.1 | / |
1253 K-40 h* | 49.8 | 6.6 | 228 | 0.83 | 3.6 | 0.069 |
Table 1 Superconducting properties of Sm0.85Nd0.15FeAsO0.85F0.15 sintered at different conditions: critical temperature Tc, upper critical field Hc2, slope of temperature dependence of critical field dH/dT near Tc using the criteria of ρ90%, normal state resistivity ρ300K, normal-state residual resistivity ratio RRR = ρ300K/ρ55K
Sample | Tc /K | -dH90%/dT (T·K-1) | Hc2 / T | ρ300K/ (mΩ·cm) | RRR | FWHM(102)/(°) |
---|---|---|---|---|---|---|
1193 K-40 h | 50.1 | 10.8 | 375 | 4.71 | 4.0 | / |
1253 K-20 min | 51.4 | 10.2 | 363 | 2.44 | 3.8 | 0.108 |
1253 K-2 h | 51.3 | 10.6 | 377 | 2.66 | 4.1 | 0.099 |
1253 K-12 h | 51.9 | 10.2 | 367 | 1.99 | 4.3 | 0.092 |
1253 K-40 h | 50.3 | 10.3 | 359 | 1.05 | 4.1 | 0.075 |
1433 K-20 min | 49.0 | 8.7 | 295 | 2.90 | 3.6 | / |
1433 K-2 h | 50.1 | 8.0 | 278 | 4.53 | 3.5 | 0.085 |
1433 K-40 h | 50.4 | 7.7 | 272 | 0.47 | 3.8 | 0.070 |
1253 K-2 h* | 46.9 | 7.1 | 215 | 5.55 | 3.1 | / |
1253 K-40 h* | 49.8 | 6.6 | 228 | 0.83 | 3.6 | 0.069 |
Fig. 2 (a) Temperature dependent of resistivity of Sm0.85Nd0.15FeAsO0.85F0.15 samples sintered at different temperatures for 40 h from mechanical alloyed powders. (b) Temperature dependent of resistivity of Sm0.85Nd0.15FeAsO0.85F0.15 sample sintered at 1253 K for 40 h under different magnetic field. The inset shows the critical field vs Tc curve
Sample | Synthesis condition | Tc /K | Hc2(0)/T | Remark |
---|---|---|---|---|
Sm0.85Nd0.15FeAsO0.85F0.15 | 1253 K, 2 h | 51.3 | 377 | MA, current study |
SmFeAsO0.85F0.15[ | 1433 K, 40 h | 46 | 150 | Solid state synthesis |
SmFeAsO0.65F0.35[ | 1433 K, 40 h | 52 | 120 | Solid state synthesis |
SmFeAsO0.85[ | 1523 K, 2 h, 6 GPa | 53.5 | 340* | High pressure sintering |
Table 2 Typical critical temperature Tc (K) and upper critical field Hc2(0) (T) of SmFeAsO-based superconductors synthesized by using different methods
Sample | Synthesis condition | Tc /K | Hc2(0)/T | Remark |
---|---|---|---|---|
Sm0.85Nd0.15FeAsO0.85F0.15 | 1253 K, 2 h | 51.3 | 377 | MA, current study |
SmFeAsO0.85F0.15[ | 1433 K, 40 h | 46 | 150 | Solid state synthesis |
SmFeAsO0.65F0.35[ | 1433 K, 40 h | 52 | 120 | Solid state synthesis |
SmFeAsO0.85[ | 1523 K, 2 h, 6 GPa | 53.5 | 340* | High pressure sintering |
Fig. 5 (a)-(d) SEM images of Sm0.85Nd0.15FeAsO0.85F0.15 sample sintered at 1253 K ranged from 20 min to 40 h from unmilled powders. (e)-(f) SEM images of Sm0.85Nd0.15FeAsO0.85F0.15 sample sintered for 40 h at different temperatures from unmilled powders
[1] | Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor LaO1-xFxFeAs (x = 0.05-0.12) with Tc= 26 K. J. Am. Chem. Soc., 2008, 130(11): 3296-3297. |
[2] | Chen X H, Wu T, Wu G, et al. Superconductivity at 43 K in SmFeAsO1-xFx. Nature, 2008, 453: 761-762. |
[3] | Zhi-An R, Lu W, Jie Y, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound SmO1-xFxFeAs. Chin. Phys. Lett., 2008, 25: 2215-2221. |
[4] | Aswathy P M, Anooja J B, Sarun P M, et al. An overview on iron based superconductors. Supercond. Sci. Technol. , 2010, 23(7): 073001-1-3. |
[5] | Putti M, Pallecchi I, Bellingeri E, et al. New Fe-based superconductors: properties relevant for applications. Supercond. Sci. Technol. , 2010, 23(3): 034003-1-11. |
[6] | Hilgenkamp H, Mannhart J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys., 2002, 74(2): 485-549. |
[7] | Dam B, Huijbregtse J M, Klaassen F C, et al. Origin of high critical currents in YBa2Cu3O7-δ superconducting thin films. Nature, 1999, 399: 439-442. |
[8] | Martinelli A, Ferretti M, Manfrinetti P, et al. Synthesis, crystal structure, microstructure, transport and magnetic properties of SmFeAsO and SmFeAs(O0.93F0.07). Supercond. Sci. Technol. , 2008, 21(9): 095017-1-3. |
[9] | Fang A H, Huang F Q, Xie X M, et al. Low-temperature rapid synthesis and superconductivity of Fe-based oxypnictide superconductors. J. Am. Chem. Soc., 2010, 132(10): 3260-3261. |
[10] | Ren Z A, Che G C, Dong X L, et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ (Re = rare-earth metal) without fluorine doping. Europhys. Lett. , 2008, 83(1): 17002-1-5. |
[11] | McCallum R W, Yan J Q, Rustan G E, et al. In situ high energy X-ray synchrotron diffraction study of the synthesis and stoichiometry of LaFeAsO and LaFeAsO1-xFy. J. App. Phys. , 2009, 105(12): 123912-1-11. |
[12] | Werthamer N R, Helfand E, Hohenberg P C. Temperature and purity dependence of the superconducting critical field, Hc2. III. electron spin and spin-orbit effects. Phys. Rev., 1966, 147(1): 295-302. |
[13] | Senatore C, Flükiger R, Cantoni M, et al. Upper critical fields well above 100 T for the superconductor SmFeAsO0.85F0.15 with Tc = 46 K. Phys. Rev. B, 2008, 78(5): 054514-1-7. |
[14] | Ma Y, Gao Z, Qi Y, et al. Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method. Physica C, 2009, 469(9-12): 651-656. |
[15] | Jaroszynski J, Riggs S, Hunte F, et al. Comparative high-field magnetotransport of the oxypnictide superconductors RFeAsO1-xFx (R=La, Nd) and SmFeAsO1-δ. Phys. Rev. B, 2008, 78(6): 064511-1-5. |
[1] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[2] | KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles [J]. Journal of Inorganic Materials, 2024, 39(1): 17-31. |
[3] | ZOU Can-Hui, LONG Ying, ZHENG Xin, ZHANG Jin-Yang, LIN Hua-Tai. Preparation, Microstructure and Property of Ternary Transition Metal Boride Os1-xRuxB2 [J]. Journal of Inorganic Materials, 2018, 33(7): 787-792. |
[4] | XING Zhi-Bo, LI Jing-Feng. Powder Metallurgic Synthesis of Mid-temperature Lead-free AgSn18SbTe20 Thermoelectric Materials and Processing Influence on Thermoelectric Performance [J]. Journal of Inorganic Materials, 2015, 30(8): 872-876. |
[5] | ZHANG Zhi-Xiao, DU Xian-Wu, XING Wei-Hong, WANG Wei-Min, ZHANG Jin-Yong, FU Zheng-Yi. Effect of SiC Content on B4C-SiC Composites Fabricated by Mechanical Alloying-hot Pressing [J]. Journal of Inorganic Materials, 2014, 29(7): 695-700. |
[6] | ZHANG Zhi-Xiao, DU Xian-Wu, WANG Wei-Min, FU Zheng-Yi, WANG Hao. Preparation and Sintering of High Active and Ultrafine B4C-SiC Composite Powders [J]. Journal of Inorganic Materials, 2014, 29(2): 185-190. |
[7] | LIU Yi-Xin,YANG Shu-Quan,ZHANG Dan-Dan,LI Guang-Xu,WEI Wen-Lou,GUO Jin. Effects of B and C on Hydrogen Storage Properties of Li-N-H Complex Hydrides [J]. Journal of Inorganic Materials, 2009, 24(4): 813-816. |
[8] | LIU Su-Qin,CHEN Dong-Yang,HUANG Ke-Long,HUANG Hong-Xia. Preparation and Electrochemical Characteristics of MgNi-TiNi0.56M0.44(M=Al,Fe)Alloys [J]. Journal of Inorganic Materials, 2009, 24(2): 361-366. |
[9] | LI Yue-Ming,SONG Ting-Ting,YOU Yuan,HU Yuan-Yun,LIU Wei-Liang,TANG Chun-Bao. Research on Low-temperature Sintering of Ca0.3(Li1/2Sm1/2)0.7TiO3 Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2008, 23(6): 1293-1297. |
[10] | LIU Xiang-Chun,ZHAO Li-Li,GAO Feng,YAN Xiao-Bin,TIAN Chang-Sheng. Phase Transition and Grain Growth Kinetics of V2O5 and B2O3 Doped Zinc Titanate Ceramics [J]. Journal of Inorganic Materials, 2006, 21(4): 885-892. |
[11] | XIONG Zhi,PENG Qing-Song,BAI Guang-Zhao,SHI Ying,JIANG Wan. Modified Small Punch Tests to Evaluate Ultimate Strength of PLZT Ceramics [J]. Journal of Inorganic Materials, 2005, 20(6): 1379-1384. |
[12] | QIAO Yu-Qing,ZHAO Min-Shou,ZHU Xin-Jian,CAO Guang-Yi. Progress of Research on Preparation of Mg-Ni Based Alloy by Mechanical Alloying for Hydride Electrode Materials [J]. Journal of Inorganic Materials, 2005, 20(1): 33-41. |
[13] | PENG Qing-Song,JIANG Wan,WANG Gang,LI Jing-Feng. Preparation of PLZT Ceramics via Mechanical Alloying [J]. Journal of Inorganic Materials, 2004, 19(5): 1199-1202. |
[14] | WU Jun,XIE Chang-Sheng,HUANG Kai-Jin,WANG Ai-Hua,WANG Wen-Yan. Low Temperature Sintering of Doped ZnO-V2O5 Varistors [J]. Journal of Inorganic Materials, 2004, 19(1): 239-243. |
[15] | LUO Ling-Hong,ZHOU He-Ping,HUANG He-Ji,WANG Shao-Hong. Development of Dielectric Materials and Processing for Mulitilayer Chip Inductors [J]. Journal of Inorganic Materials, 2001, 16(6): 1032-1040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||