Journal of Inorganic Materials
Previous Articles Next Articles
ZHONG Hong, ZHANG Yuhao, SHAN Qingsong, HU Tianjun, ZENG Haibo
Received:2025-10-11
Revised:2025-11-13
Contact:
SHAN Qingsong, associate professor. E-mail: shanqingsong@njust.edu.cn; ZENG Haibo, professor. E-mail: zeng.haibo@njust.edu.cn
About author:ZHONG Hong(2001-), male, Master candidate. E-mail: zhonghong@njust.edu.cn
Supported by:CLC Number:
ZHONG Hong, ZHANG Yuhao, SHAN Qingsong, HU Tianjun, ZENG Haibo. Research Progress of Tandem Quantum-dot Light-emitting Diodes[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250397.
| [1] GARCíA DE ARQUER F P, TALAPIN D V, KLIMOV V I, et al. Semiconductor quantum dots: technological progress and future challenges. Science, 2021, 373(6555): 8541. [2] POULSEN F, HANSEN T.Band gap energy of gradient core-shell quantum dots. The Journal of Physical Chemistry C, 2017, 121(25): 13655. [3] ZHANG G, MEI S, WEI X, et al.Dual-emissive and color-tunable Mn-doped InP/ZnS quantum dots via a growth-doping method. Nanoscale Research Letters, 2018, 13(1): 170. [4] BI Y, CAO S, YU P, et al.Reducing emission linewidth of pure‐blue ZnSeTe quantum dots through shell engineering toward high color purity light‐emitting diodes. Small, 2023, 19(45): 2303247. [5] VALLéS‐PELARDA M, GUALDRÓN‐REYES A F, FELIP‐LEóN C, et al. High optical performance of cyan‐emissive CsPbBr3 perovskite quantum dots embedded in molecular organogels. Advanced Optical Materials, 2021, 9(18): 2001786. [6] BJELICA M, WITZIGMANN B.Optimization of 1.55μm quantum dot edge-emitting lasers for narrow spectral linewidth. Optical and Quantum Electronics, 2016, 48(2): 1. [7] CHEN C, ZHANG P, GAO G, et al.Near‐infrared‐emitting two‐dimensional codes based on lattice‐strained core/(doped) shell quantum dots with long fluorescence lifetime. Advanced Materials, 2014, 26(36): 6313. [8] EKIMOV A I, EFROS A L, ONUSHCHENKO A A.Quantum size effect in semiconductor microcrystals. Solid State Communications, 1985, 56(11): 921. [9] ROSSETTI R, NAKAHARA S, BRUS L E.Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. The Journal of Chemical Physics, 1983, 79(2): 1086. [10] ALIVISATOS A P, HARRIS A L, LEVINOS N J, et al.Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum. The Journal of Chemical Physics, 1988, 89(7): 4001. [11] JIN X, XIE K, ZHANG T, et al.Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields. Chem. Commun. (Camb.), 2020, 56(45): 6130. [12] MOON H, LEE C, LEE W, et al.Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater., 2019, 31(34): e1804294. [13] SUN Y, JIANG Y, SUN X W, et al.Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application. Chem. Rec., 2019, 19(8): 1729. [14] SHEN Z, ZHANG F, SHEN H, et al.Green emissive electroluminescent devices based on colloidal quantum dots. Advanced Functional Materials, 2025, 35(39): 2422093. [15] ZHANG Q, YANG K, LUO C, et al.Nanosecond response perovskite quantum dot light-emitting diodes with ultra-high resolution for active display application. Light Sci. Appl., 2025, 14(1): 285. [16] SHAN Q, DONG Y, XIANG H, et al.Perovskite quantum dots for the next‐generation displays: progress and prospect. Advanced Functional Materials, 2024, 34(36): 2401284. [17] HUANG Q, SUN S, LIU M, et al.Colloidal quantum dot electroluminescent diodes for display applications: progress and challenges. Chinese Journal of Luminescence, 2023, 44(5): 739. [18] CHEN S, ZHONG H, WANG X, et al.Hybrid-size quantum dots in hole transport layer depress dark current density of short-wave infrared photodetectors. ACS Photonics, 2025, 12(2): 879. [19] WANG S, WEN J, FENG L, et al.High temperature resistance and wide-spectrum detection flexible photodetectors based on PbS quantum dots/Bi2S3 nanorods. Materials Science in Semiconductor Processing, 2025, 198: 109738. [20] SHAN Q, WEI C, JIANG Y, et al.Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci. Appl., 2020, 9: 163. [21] XUE J, LIU J, MAO S, et al.Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots. Materials Research Bulletin, 2018, 106: 113. [22] JI K, YUAN J, LI F, et al.High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. Journal of Materials Chemistry A, 2020, 8(16): 8104. [23] MCDONALD C, PADMANABAN D B, MCGLYNN R, et al.Improved performance and stability of perovskite solar cells by incorporating silicon quantum dots within the FAPbI3 active layer. Advanced Energy Materials, 2025, 15(36): e02864. [24] SHI Y, WANG J, SONG X, et al.Six-angle polarized snowflake-like carbon quantum dots via electrostatic reversion for low-cost and high-efficiency solar cells. Joule, 2025, 9(8): 102013. [25] ZHANG Z, WANG W, RAO H, et al.Boosting the efficiency of quantum dot‐sensitized solar cells over 17% via sequential deposition of water‐and oil‐soluble quantum dots. Advanced Functional Materials, 2025, 35(26): 2501241. [26] ZENG H, HAN B, ZHANG F.Perovskite quantum dot photovoltaic and luminescent concentrator cells: current status and challenges. Journal of Inorganic Materials, 2022, 37(2): 117. [27] ZHANG Y, LIU B, LIU Z, et al.Research progress in the synthesis and biological application of quantum dots. New Journal of Chemistry, 2022, 46(43): 20515. [28] BRUCHEZ M, MORONNE M, GIN P, et al.Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013. [29] ZHANG Y, LV Y, LI L S, et al.Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis. Exploration (Beijing), 2022, 2(4): 20220082. [30] WANG B, CAI H, WATERHOUSE G I N, et al. Carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review. Small Sci., 2022, 2(6): 2200012. [31] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692. [32] JIANG J, ZHANG S, SHAN Q, et al.High-color-rendition white QLEDs by balancing red, green and blue centres in eco-friendly ZnCuGaS:In@ZnS quantum dots. Adv. Mater., 2024, 36(21): e2304772. [33] ZENG H, LIU Y, SHAN Q, et al.High-brightness and monodisperse quaternary CuInZnS@ZnS quantum dots with tunable and long-lived emission. Journal of Inorganic Materials, 2025, 40(4): 433. [34] YANG Z, GAO M, WU W, et al.Recent advances in quantum dot-based light-emitting devices: challenges and possible solutions. Materials Today, 2019, 24: 69. [35] YUAN Q, WANG T, YU P, et al.A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic Electronics, 2021, 90: 106086. [36] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al.Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2012, 7(1): 13. [37] BAE W K, BROVELLI S, KLIMOV V I.Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bulletin, 2013, 38(9): 721. [38] DAI X, DENG Y, PENG X, et al.Quantum‐dot light‐emitting diodes for large‐area displays: towards the dawn of commercialization. Advanced Materials, 2017, 29(14): 1607022. [39] XU L, LI J, CAI B, et al.A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nature Communications, 2020, 11(1): 3092. [40] CUI Z, YANG D, QIN S, et al.Advances, challenges, and perspectives for heavy-metal-free blue-emitting indium phosphide quantum dot light-emitting diodes. Advanced Optical Materials, 2022, 11(4): 2202036. [41] WANG F, HUA Q, LIN Q, et al.High-performance blue quantum‐dot light‐emitting diodes by alleviating electron trapping. Advanced Optical Materials, 2022, 10(13): 2200319. [42] LIM E L, CHEN X, WEI Z.The rise of tandem perovskite light‐emitting diode. Small, 2024, 20(51): 2405933. [43] SUN Y, HAN C, LI R, et al.Fully solution-processed red tandem quantum dot light-emitting diodes with an EQE exceeding 35%. Journal of Materials Chemistry C, 2024, 12(27): 10053. [44] MATSUMOTO T, NAKADA T, ENDO J, et al.27.5L: late‐news paper: multiphoton organic EL device having charge generation layer. SID Symposium Digest of Technical Papers, 2012, 34(1): 979. [45] LEE S, SHIN H, KIM J J.High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles. Adv. Mater., 2014, 26(33): 5864. [46] SHEN H, LIN Q, CAO W, et al.Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots. Nanoscale, 2017, 9(36): 13583. [47] FU Y, LIU H, YANG D, et al. Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation. Sci. Adv., 2021, 7(43): eabj2504. [48] ZHANG H, CHEN S, SUN X W.Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21. ACS Nano, 2018, 12(1): 697. [49] CAO W, XIANG C, YANG Y, et al.Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun., 2018, 9(1): 2608. [50] SHEN H, GAO Q, ZHANG Y, et al.Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13(3): 192. [51] FUNG M K, LI Y Q, LIAO L S.Tandem organic light‐emitting diodes. Advanced Materials, 2016, 28(47): 10381. [52] ZHANG H, SU Q, SUN Y, et al.Efficient and color stable white quantum-dot light-emitting diodes with external quantum Efficiency over 23%. Advanced Optical Materials, 2018, 6(16): 1800354. [53] MENG S G, ZHU X Z, ZHOU D Y, et al.Recent progresses in solution-processed tandem organic and quantum dots light-emitting diodes. Molecules, 2022, 28(1): 134. [54] WU Q, GONG X, ZHAO D, et al.Efficient tandem quantum-dot LEDs enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack. Advanced Materials, 2021, 34(4): 2108150. [55] DAI X, ZHANG Z, JIN Y, et al.Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96. [56] KRöGER M, HAMWI S, MEYER J, et al. Temperature-independent field-induced charge separation at doped organic/organic interfaces: experimental modeling of electrical properties. Physical Review B, 2007, 75(23): 235321. [57] ZHANG H, FENG Y, CHEN S.Improved efficiency and enhanced color quality of light-emitting diodes with quantum dot and organic hybrid tandem structure. ACS Applied Materials & Interfaces, 2016, 8(40): 26982. [58] ZHANG H, SUN X, CHEN S.Over 100 cd·A-1 efficient quantum dot light-emitting diodes with inverted tandem structure. Advanced Functional Materials, 2017, 27(21): 1700610. [59] ZHOU T, WANG T, BAI J, et al.High‐performance tandem quantum-dot light-emitting diodes based on bulk-heterojunction-like charge-generation layers. Advanced Materials, 2024, 36(25): 2313888. [60] ZHAN S, LIU J-T, ZHANG H-Z, et al.Quantum-dot light-emitting diodes based on inorganic charge-generation layer. Chinese Journal of Luminescence, 2022, 43(10): 1469. [61] MEI K, HUO S, YU R, et al.Quantum-dot light-emitting diodes based on MoO3/ZnO inorganic charge-generation layer. Chinese Journal of Luminescence, 2023, 44(11): 1885. [62] LEE H, PARK I, KWAK J, et al.Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles. Applied Physics Letters, 2010, 96(15): 153306. [63] DOBBERTIN T, KROEGER M, HEITHECKER D, et al.Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes. Applied Physics Letters, 2003, 82(2): 284. [64] LEE T, HAHM D, KIM K, et al.Highly efficient and bright inverted top‐emitting InP quantum dot light‐emitting diodes introducing a hole-suppressing interlayer. Small, 2019, 15(50): 1905162. [65] KIM H M, LEE J, HWANG E, et al.P-95: inverted tandem architecture of quantum-dot light emitting diodes with solution processed charge generation layers. SID Symposium Digest of Technical Papers, 2016, 47(1): 1480. [66] WU J, XIA J, LEI W.Investigation on the wetting issues in solution processed quantum dot light-emitting diodes with inverted tandem structure. Organic Electronics, 2019, 67: 116. [67] SHANSHAN Y A N, SHEN W, WENCHENG L, et al. Time-resolved electroluminescence of charge carrier dynamics in multiple-emitting-layer white QLEDs with polyethyleneimine interlayers. Chinese Journal of Luminescence, 2025, 46(10): 1851. [68] CAO F, ZHAO D, SHEN P, et al.High‐efficiency, solution‐processed white quantum dot light-emitting diodes with serially stacked red/green/blue units. Advanced Optical Materials, 2018, 6(20): 1800652. [69] KWON O, KIM D, KIM M, et al.High-performance tandem CdSe/ZnS quantum-dot light-emitting diodes with a double-layer interconnecting layer composed of thermally evaporated and sputtered metal oxides. Journal of Information Display, 2022, 23(3): 213. [70] MENG S G, SHEN W S, LIU W Z, et al.Solution‐processed tandem quantum-dot light-emitting diodes with dual charge generation interfaces: achieving over threefold efficiency enhancement. Advanced Materials Interfaces, 2024, 11(26): 2400098. [71] ZHANG H, WANG S, SUN X, et al.All solution‐processed white quantum‐dot light‐emitting diodes with three‐unit tandem structure. Journal of the Society for Information Display, 2017, 25(3): 143. [72] ZHANG H, CHEN S, SUN X W.Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%. ACS Nano, 2017, 12(1): 697. [73] JIANG C, ZOU J, LIU Y, et al.Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25%. ACS Nano, 2018, 12(6): 6040. [74] CHEN J, CHEN S, LIU X, et al. Molecule-induced ripening control in perovskite quantum dots for efficient and stable light-emitting diodes. Sci. Adv., 2025, 11(11): eads7159. [75] SUN S Q, CAI Y, ZHU M, et al.Highly efficient hybrid perovskite/organic tandem white light emitting‐diodes with external quantum efficiency exceeding 20%. Advanced Functional Materials, 2023, 33(51): 2306549. [76] KONG L, LUO Y, WU Q, et al.Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent. Light: Science & Applications, 2024, 13(1): 1364. [77] LEE H D, WOO S J, KIM S, et al.Valley-centre tandem perovskite light-emitting diodes. Nature Nanotechnology, 2024, 19(5): 624. [78] XIA F, SUN X W, CHEN S.Alternating-current driven quantum-dot light-emitting diodes with high brightness. Nanoscale, 2019, 11(12): 5231. [79] ZHANG H, SU Q, CHEN S.Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nature Communications, 2020, 11(1): 2826. [80] ZHANG H, WANG J, CHEN S.220V/50Hz compatible bipolar quantum-dot light-emitting diodes. Advanced Materials, 2024, 36(16): 2312334. [81] ZHANG H, CHEN L, CHEN S.Quantum-dot and organic hybrid tandem light-emitting diodes with color-selecting intermediate electrodes for full-color displays. Nanoscale, 2021, 13(39): 16781. [82] SU Q, ZHANG H, CHEN S.Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue emission. npj Flexible Electronics, 2021, 5(1): 8. [83] YOO J I, KIM H B, KO Y J, et al.All-solution-processed dual-color QLED with hole-only-injection and n-p-n intermediate connecting layer. ACS Applied Electronic Materials, 2025, 7(2): 679. [84] YUAN C, CHEN Z, TIAN F, et al.Very stable and efficient tandem quantum-dot light-emitting diodes enabled by IZO-based interconnecting layers. Nano Letters, 2024, 24(24): 7541. [85] SU Q, ZHANG H, XIA F, et al.73‐4: tandem red quantum‐dot light‐emitting diodes with external quantum efficiency over 34 %. SID Symposium Digest of Technical Papers, 2018, 49(1): 977. [86] LI H, WANG J, CHEN S.Face-to-face integrated tandem quantum-dot LEDs with high performance and multifunctionality. Light Sci. Appl., 2025, 14(1): 171. [87] YANG D, WANG Y, XIE J, et al.Regular tandem quantum dot light‐emitting diodes with over 51% external quantum efficiency for next‐generation displays. Advanced Materials, 2025, 37(44): e08173. [88] MENG S G, WANG Y, XU J Z, et al.Dipole engineering in charge generation interface for fully solution‐processed and PEDOT:PSS‐free tandem quantum‐dot light-emitting diodes. Advanced Electronic Materials, 2025, 11(14): 2500180. |
| [1] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
| [2] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
| [3] | SUN Hai-Qin, ZHANG Tao, ZHANG Qi-Wei, ZHANG Yin. Red Emission Properties for (Bi0.5Na0.5)TiO3:Sm3+ Lead-free Piezoelectrics [J]. Journal of Inorganic Materials, 2014, 29(8): 851-854. |
| [4] | LIU Feng-Juan, SHAO Jing-Zhen, DONG Wei-Wei, DENG Zan-Hong, WANG Shi-Mao, FANG Xiao-Dong. Optimization of Photoelectrode for Flexible Dye-sensitized Solar Cell and Preliminary Study of Tandem Cell [J]. Journal of Inorganic Materials, 2013, 28(5): 527-531. |
| [5] | HUANG Yi-Min, LIU Zhi-Yong, WANG Xiao-Qi, LU Yu-Ming, CAI Chuan-Bing. Tandem Dye-sensitized Solar Cell Based on Metal Mesh [J]. Journal of Inorganic Materials, 2011, 26(7): 774-778. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||