[1] DING L, JIANG R, TANG Z L,et al. MXene: nanoengineering and application as electrode materials for supercapacitors. Journal of Inorganic Materials, 2023, 38(6): 619. [2] LI Z H, TAN M J,ZHENG Y H,et al. Application of conductive metal organic frameworks in supercapacitors. Journal of Inorganic Materials, 2020, 35(7): 769. [3] 方雪, 阚侃, 马宇良, 等. 基于MXene的可印刷柔性超级电容器的研究进展. 化学与粘合, 2025, 47(4): 455. [4] 邢鑫鑫, 刘吉双, 朱岩, 等. 电极材料在柔性超级电容器中的进展. 精细化工, 2025, 42(6): 1221. [5] AJAJ Y, AL-SALMAN H N K, HUSSEIN A M, et al. Effect and investigating of graphene nanoparticles on mechanical, physical properties of polylactic acid polymer. Case Studies in Chemical and Environmental Engineering, 2024, 9: 100612. [6] LALIRE T, LONGUET C, TAGUET A.Electrical properties of graphene/multiphase polymer nanocomposites: a review.Carbon, 2024, 225: 119055. [7] ZHAO Y, QIAO W, WANG H, et al. Introducing phosphoric acid to fluorinated polyimide towards high performance laser induced graphene electrodes for high energy micro-supercapacitors. Carbon, 2024, 230: 119665. [8] LU J, LI Y, LI S, et al. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Scientific Reports, 2016, 6: 21530. [9] ALMARZOGE M, GENCTEN M, OZSIN G.Production of sulphur-doped graphene oxide as an anode material for Na-ion batteries.ECS Journal of Solid State Science and Technology, 2024, 13(7): 071001. [10] ZHU S, ZHANG F, LU H-G, et al. Flash nitrogen-doped graphene for high-rate supercapacitors. ACS Materials Letters, 2022, 4(10): 1863. [11] ELUMALAI P, CHARLES J, KENNEDY L J.Fabrication of PPy/PANI/MnO2-based electrode and its electrochemical evaluation for supercapacitor applications.Ionics, 2024, 30(11): 7397. [12] WANG H, LIN J, SHEN Z X.Polyaniline (PANi) based electrode materials for energy storage and conversion.Journal of Science: Advanced Materials and Devices, 2016, 1(3): 225. [13] TUNDWAL A, KUMAR H, BINOJ B J, et al. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review. RSC Advances, 2024, 14(14): 9406. [14] TROPP J, COLLINS C P, XIE X, et al. Conducting polymer nanoparticles with intrinsic aqueous dispersibility for conductive hydrogels. Advanced Materials, 2024, 36(1): 2306691. [15] MARWAT M A, ISHFAQ S, ADAM K M, et al. Enhancing supercapacitor performance of Ni-Co-Mn metal-organic frameworks by compositing it with polyaniline and reduced graphene oxide. RSC Advances, 2024, 14(3): 2102. [16] ZHAO J, WU J, LI B, et al. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International, 2016, 26(3): 237. [17] SUN X, GAO X, CHEN J, et al. Ultrasmall Ru nanoparticles highly dispersed on sulfur-doped graphene for her with high electrocatalytic performance. ACS Applied Materials & Interfaces, 2020, 12(43): 48591. [18] 马茹萍, 罗剑, 吕彦, 等. 锰氧化物/聚苯胺/石墨烯三元复合电极材料的制备及电化学性能. 武汉工程大学学报, 2023, 45(6): 641. [19] 蓝瑞嵩, 刘丽华, 张倩, 等. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测. 化工进展, 2024, 43(6): 3430. [20] DIANATDAR A, MUKHERJEE A, BOSE R K.Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode material.Synthetic Metals, 2023, 298: 117444. [21] KANDASAMY S K, KANDASAMY K.Structural and electrochemical analysis of microwave-assisted synthesis of graphene/polypyrrole nanocomposite for supercapacitor.International Journal of Electrochemical Science, 2019, 14(5): 4718. [22] KASHANI H, CHEN L, ITO Y, et al. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19: 391. [23] ZHANG Y, SHANG Z, SHEN M, et al. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11175. [24] OH J, KIM Y K, LEE J S, et al. Highly porous structured polyaniline nanocomposites for scalable and flexible high-performance supercapacitors. Nanoscale, 2019, 11(13): 6462. [25] GUO M, ZHOU Y, SUN H, et al. Interconnected polypyrrole nanostructure for high-performance all-solid-state flexible supercapacitor. Electrochimica Acta, 2019, 298: 918. [26] YADAV R, SAINI A, CHOUDHARY J, et al. High-performance flexible supercapacitor based on morphology tuned polypyrrole/molybdenum disulfide nanocomposites. Energy Storage, 2023, 5(8): e477. [27] PANASENKO I V, BULAVSKIY M O, IURCHENKOVA A A, et al. Flexible supercapacitors based on free-standing polyaniline/single-walled carbon nanotube films. Journal of Power Sources, 2022, 541: 231691. [28] JIAO Y, LI J.Polyaniline-polypyrrole nanocomposites using a green and porous wood as support for supercapacitors.Frontiers of Agricultural Science and Engineering, 2019, 6(2): 137. [29] LUO S, ZHAO J, ZOU J, et al. Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Applied Materials & Interfaces, 2018, 10(4): 3538. [30] ÇEKIç M G, KARACA E, PEKMEZ N Ö.A facile one-step electrosynthesis of polypyrrole/nano-SbOx composite for supercapacitors. Synthetic Metals, 2023, 293: 117262. [31] ARYADEVI G, JOSEPH G, MATHEW V R, et al. Optimizing the electrochemical properties of PPy/ZnO nanocomposites for supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2024, 35(21): 1490. [32] YUKSEL R, ALPUGAN E, UNALAN H E.Coaxial silver nanowire/polypyrrole nanocomposite supercapacitors.Organic Electronics, 2018, 52: 272. [33] LI Z, YAO M, ZHANG L, et al. Preparation of flexible and free-standing polypyrrole/graphene film electrodes for supercapacitors. New Journal of Chemistry, 2022, 46(37): 17776. [34] ROOHI Z, MIGHRI F, ZHANG Z.A flexible, lightweight, and high-performance supercapacitor made of nanofibrous polypyrrole electrodes.ACS Omega, 2025, 10(29): 31600. [35] KWON H, HAN D J, LEE B Y.All-solid-state flexible supercapacitor based on nanotube-reinforced polypyrrole hollowed structures.RSC Advances, 2020, 10(68): 41495. |