Journal of Inorganic Materials
YAN Mijia1,2, ZHANG Jiale1,2, ZHANG Qiuhong1, CHEN Hangrong1,2
Received:
2025-02-26
Revised:
2025-03-21
Contact:
ZHANG Qiuhong, associate professor. E-mail: zhangqh@ucas.ac.cn
About author:
YAN Mijia (1999-), female, Master candidate. E-mail: yanmijia22@mails.ucas.ac.cn
Supported by:
CLC Number:
YAN Mijia, ZHANG Jiale, ZHANG Qiuhong, CHEN Hangrong. CeO2 Clusterzymes: Biomimetic Synthesis and Treatment for Acute Liver Injury[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250086.
[1] STRAVITZ R T, LEE W M.Acute liver failure.The Lancet, 2019, 394(10201): 869. [2] FERNáNDEZ J, BASSEGODA O, TOAPANTA D, et al. Acute liver failure: A practical update. JHEP Reports, 2024, 6(9): 101131. [3] BERNAL W, WENDON J.Acute liver failure.New England Journal of Medicine, 2013, 369(26): 2525. [4] DU K, RAMACHANDRAN A, JAESCHKE H.Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential.Redox Biology, 2016, 10: 148. [5] WANG F, YUAN H, SHEN J, et al. Nanozymes with broad-spectrum scavenging of reactive oxygen species (ROS) alleviate inflammation in acute liver injury. ACS Materials Letters, 2024, 6(4): 1304. [6] AHMED O, ROBINSON M W, O’FARRELLY C. Inflammatory processes in the liver: divergent roles in homeostasis and pathology.Cellular & Molecular Immunology, 2021, 18(6): 1375. [7] LIU J, HAN X, ZHANG T, et al. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. Journal of Hematology & Oncology, 2023, 16(1): 100124. [8] TENóRIO M C D S, GRACILIANO N G, MOURA F A, et al. N-acetylcysteine (NAC): impacts on human health. Antioxidants, 2021, 10(6): 967. [9] LI F, QIU Y, XIA F, et al. Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today, 2020, 35: 100925. [10] YANG R, MIKI K, HE X, et al. Prolonged treatment with N-acetylcystine delays liver recovery from acetaminophen hepatotoxicity. Critical Care, 2009, 13(2): R55. [11] MUHAMMAD F, HUANG F, CHENG Y, et al. Nanoceria as an electron reservoir: spontaneous deposition of metal nanoparticles on oxides and their anti-inflammatory activities. ACS Nano, 2022, 16(12): 20567. [12] KOO S, SOHN H S, KIM T H, et al. Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model. Nature Nanotechnology, 2023, 18(12): 1502. [13] IM G B, KIM Y G, YOO T Y, et al. Ceria nanoparticles as copper chaperones that activate SOD1 for synergistic antioxidant therapy to treat ischemic vascular diseases. Advanced Materials, 2023, 35(16): 2208989. [14] WANG L, ZHU B, DENG Y, et al. Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Advanced Functional Materials, 2021, 31(31): 2101804. [15] KIM Y G, LEE Y, LEE N, et al. Ceria-based therapeutic antioxidants for biomedical applications. Advanced Materials, 2023, 36(10): 2210819. [16] YUN L-X, WU H, SHEN Z-G, et al. Ultrasmall CeO2 nanoparticles with rich oxygen defects as novel catalysts for efficient glycolysis of polyethylene terephthalate. ACS Sustainable Chemistry & Engineering, 2022, 10(16): 5278. [17] 梁云燕,孙芳营,尚利.基于金纳米团簇类酶活性的比色传感研究.分析化学,2021,49(6):931. [18] SUN S, LIU H, XIN Q, et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion. Nano Letters, 2021, 21(6): 2562. [19] FU S, CHEN H, YANG W, et al. ROS-targeted depression therapy via BSA-incubated ceria nanoclusters. Nano Letters, 2022, 22(11): 4519. [20] WANG Y, WU Y, LIU Y, et al. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Advanced Functional Materials, 2016, 26(29): 5335. [21] BLANCO E, SHEN H, FERRARI M.Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nature Biotechnology, 2015, 33(9): 941. [22] SUN Y, LU D, ZHANG H, et al. Titanium oxide electrocatalytic membrane filtration: “two faces” of oxygen vacancies in generation and transformation of reactive oxygen species. Environmental Science & Technology, 2023, 57(35): 13226. [23] KESAVARDHANA S, MALIREDDI R K S, KANNEGANTI T-D. Caspases in cell death, inflammation, and pyroptosis.Annual Review of Immunology, 2020, 38(1): 567. [24] BHUSHAN B, APTE U.Liver regeneration after acetaminophen hepatotoxicity.The American Journal of Pathology, 2019, 189(4): 719. [25] ZHAO C, LI Z, CHEN J, et al. Site-specific biomimicry of antioxidative melanin formation and its application for acute liver injury therapy and imaging. Advanced Materials, 2021, 33(34): 2102391. [26] ROTUNDO L, PYRSOPOULOS N.Liver injury induced by paracetamol and challenges associated with intentional and unintentional use.World Journal of Hepatology, 2020, 12(4): 125. [27] 郑惠星. 对乙酰氨基酚诱导小鼠急性肝损伤模型机理研究.硕士.延边大学, 2015. [28] ETEMADI Y, AKAKPO J Y, RAMACHANDRAN A, et al. Nrf2 as a therapeutic target in acetaminophen hepatotoxicity: A case study with sulforaphane. Journal of Biochemical and Molecular Toxicology, 2023, 37(12): e23505. [29] KANG D-W, KIM C K, JEONG H-G, et al. Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage. Nano Research, 2017, 10(8): 2743. [30] 于慧杰,盛国光.三种品系小鼠对伴刀豆球蛋白A所致急性肝损伤的耐受性比较研究.实用肝脏病杂志,2014(2): 168 [31] SHAN X, LI J, LIU J, et al. Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury. Nature Communications, 2023, 14(1): 7598. [32] XIA F, HU X, ZHANG B, et al. Ultrasmall ruthenium nanoparticles with boosted antioxidant activity upregulate regulatory T cells for highly efficient liver injury therapy. Small, 2022, 18(29): 2201558. [33] MU J, LI C, SHI Y, et al. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nature Communications, 2022, 13(1): 2513. |
[1] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[2] | WANG Wenting, XU Jingjun, MA Ke, LI Meishuan, LI Xingchao, LI Tongqi. Oxidation Behavior at 1000-1300 ℃ in air of Ti2AlC-20TiB2 Synthesized by in-situ Reaction/Hot Pressing [J]. Journal of Inorganic Materials, 2025, 40(1): 31-38. |
[3] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[4] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[5] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[6] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[7] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[8] | SHU Chaoqin, ZHU Min, ZHU Yufang. Cobalt-incorporated Chlorapatite: Preparation by Molten Salt Method, Anti-oxidation and Cytocompatibility [J]. Journal of Inorganic Materials, 2022, 37(11): 1225-1235. |
[9] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[10] | ZHANG Yachen, MENG Jia, CAI Kun, SHENG Xiaochen, LE Jun, SONG Lixin. Bending Failure Mechanism Study of Si-Cr-Ti High Temperature Oxidation Resistance Coating via Acoustic Emission Technique [J]. Journal of Inorganic Materials, 2021, 36(11): 1185-1192. |
[11] | HUANG Xiubing, WANG Peng, TAO Jinzhang, XI Zuoshuai. CeO2 Modified Mn-Fe-O Composites and their Catalytic Performance for NH3-SCR of NO [J]. Journal of Inorganic Materials, 2020, 35(5): 573-580. |
[12] | Han-Qing YU, Zhi-Jun DONG, Guan-Ming YUAN, Ye CONG, Xuan-Ke LI, Yong-Ming LUO. Boron-carbon doped Silicon Carbide Fibers: Preparation and Property [J]. Journal of Inorganic Materials, 2019, 34(5): 493-501. |
[13] | YANG Zhi-Bin, YUE Tong-Lian, YU Xiang-Nan, WU Miao-Miao. Electrocatalytic Activity of Cobalt Doped Ceria Nanoparticles [J]. Journal of Inorganic Materials, 2018, 33(8): 845-853. |
[14] | SHI Jian-Jun, ZHANG Zong-Bo, FENG Zhi-Hai, ZHANG Da-Hai, WANG Yun, XU Cai-Hong. Modification of Oxidation Resistance for Low Density Carbon-bonded Carbon Fiber (CBCF) Composite [J]. Journal of Inorganic Materials, 2018, 33(7): 728-734. |
[15] | CHEN Ting, ZHA Jian-Rui, ZHANG Xiao-Jun, JIANG Wei-Hui, JIANG Wan, LIU Jian-Min, WU Qian. Silane Coupling Agent on Synthesis and Antioxidation Property of Zircon Film [J]. Journal of Inorganic Materials, 2017, 32(11): 1154-1158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||