Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (4): 431-435.DOI: 10.15541/jim20200380
Special Issue: 能源材料论文精选(2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【虚拟专辑】超级电容器(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
GUO Meng(), ZHANG Fengnian, MIAO Yang(
), LIU Yufeng, YU Jun, GAO Feng
Received:
2020-07-07
Revised:
2020-10-23
Published:
2021-04-20
Online:
2020-11-05
Contact:
MIAO Yang, associate professor. E-mail: miaoyang@tyut.edu.cn
About author:
GUO Meng(1997-), male, Master candidate. E-mail: 18235120868@163.com
Supported by:
CLC Number:
GUO Meng, ZHANG Fengnian, MIAO Yang, LIU Yufeng, YU Jun, GAO Feng. Preparation and Electrical Properties of High Entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Perovskite Ceramics Powder[J]. Journal of Inorganic Materials, 2021, 36(4): 431-435.
Sample | La | Co | Cr | Fe | Mn | Ni |
---|---|---|---|---|---|---|
La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 | 5 | 1 | 1 | 1 | 1 | 1 |
La(Cr0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Mn0.25)O3 | 4 4 4 4 4 | No 1 1 1 1 | 1 No 1 1 1 | 1 1 No 1 1 | 1 1 1 No 1 | 1 1 1 1 No |
Table 1 Molar ratios of each element component of the six samples
Sample | La | Co | Cr | Fe | Mn | Ni |
---|---|---|---|---|---|---|
La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 | 5 | 1 | 1 | 1 | 1 | 1 |
La(Cr0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Mn0.25)O3 | 4 4 4 4 4 | No 1 1 1 1 | 1 No 1 1 1 | 1 1 No 1 1 | 1 1 1 No 1 | 1 1 1 1 No |
Fig. 4 SEM image of sample La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 calcined at 800 ℃ (a), SEM image (b) and corresponding EDS element mapping (c-g) of La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 calcined at 1000 ℃
[1] | TSAI M H, YEH J W. High-entropy alloys: a critical review. Materials Research Letters, 2014,2(3):107-123. |
[2] | MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017,122:448-511. |
[3] | HUO W Y, ZHOU H, FANG F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Materials & Design, 2017,134:226-233. |
[4] | ABHISHEK S, QINGSONG W, ALEXANDER S, et al. High entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 2019,31(26):1806236-1-9. |
[5] | ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015 , 6:8485. |
[6] |
ELINOR C, CSANADI TAMAS, SALVATORE G, et al. Processing and properties of high-entropy ultra-high temperature carbides. Scientific Reports, 2018,8(1):8609.
DOI URL PMID |
[7] | GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 2016,6(1):37946. |
[8] | POGREBNJAK A D, BAGDASARYAN A A, YAKUSHCHENKO I V, et al. The structure and properties of high-entropy alloys and nitride coatings based on them. Russian Chemical Reviews, 2014,83(11):1027-1061. |
[9] |
ZHANG R Z, GUCCI F, ZHU H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 2018,57(20):13027-3033.
DOI URL PMID |
[10] | BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24) : 9536-541. |
[11] | CHEN H, QIU N, WU B Z, et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties. RSC Advances, 2019,9(50):28908-28915. |
[12] | BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi, 2016,10(4):328-333. |
[13] | ZHANG J J, YAN J Q, CALDER S, et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chemistry of Materials, 2019,31(10):3705-3711. |
[14] | CHEN H, FU J, ZHANG P F, et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 2018,6(24):11129-11133. |
[15] | CHEN H, LIN W W, ZHANG Z H, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Materials Letters, 2019,1(1):83-88. |
[16] |
SARKAR A, LOHO C, VELASCO L, et al. Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency. Dalton Transactions, 2017,46(36):12167-12176.
DOI URL |
[17] |
GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides. Journal of the European Ceramic Society, 2018,38(10):3578-3584.
DOI URL |
[18] |
WANG D, JIANG S D, DUAN C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. Journal of Alloys and Compounds, 2020,844:156158.
DOI URL |
[19] |
MAO A Q, QUAN F, XIANG H Z, et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 2019,1194:11-18.
DOI URL |
[20] |
WANG J B, STENZEL D, AZMI R, et al. Spinel to rock-salt transformation in high entropy oxides with Li incorporation. Electrochem, 2020,1(1):60-74.
DOI URL |
[21] |
LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582.
DOI URL |
[22] | CHEN H, ZHAO Z F, XIANG H M, et al. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: a novel high temperature stable thermal barrier material. Journal of Materials Science & Technology, 2020,48:57-62. |
[23] |
JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120.
DOI URL |
[24] |
SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018,38(5):2318-2327.
DOI URL |
[25] |
IRFAN S, AJAZUNNABI M, JAMIL Y, et al. Synthesis of Mn1-xZnxFe2O4 ferrite powder by co-precipitation method. IOP Conference Series: Materials Science and Engineering, 2014,60:12048.
DOI URL |
[26] |
MASASHI, KOTOBUKI, MASAKI, et al. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method. Ionics, 2013,19(12):1945-1948.
DOI URL |
[27] |
ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 2020,46(6):7430-7437.
DOI URL |
[28] |
ZHAO S H, YANG Z B, ZHAO X M. Green preparation and supercapacitive performance of NiCo2S4@ACF heterogeneous electrode materials. Journal of Inorganic Materials, 2019,34(2):130-136.
DOI URL |
[29] |
TAO K Y, LI P Y, KANG L T, et al. Facile and low-cost combustion-synthesized amorphous mesoporous NiO/carbon as high mass-loading pseudocapacitor materials. Journal of Power Sources, 2015,293:23-32.
DOI URL |
[30] |
MA X J, KONG L B, ZHANG W B, et al. Design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 2014,130:660-669.
DOI URL |
[31] |
ZHOU R, HAN C J, WANG X M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. Journal of Power Sources, 2017,352:99-110.
DOI URL |
[32] |
HUO H H, ZHAO Y Q, XU C L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. Journal of Materials Chemistry A, 2014,2(36):15111-15117.
DOI URL |
[33] | ZHANG L X, ZHENG W H, JIU H F, et al. The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochimica Acta, 2016,215:212-222. |
[34] | ZHANG G X, CHEN Y M, HE Z N, et al. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance. Journal of Inorganic Materials, 2018,33(3):289-294. |
[1] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. |
[2] | WEI Zhi-Guo, LU Xin, TONG Jian-Bo, PAN Yu, WANG Guo-Qing, QU Xuan-Hui. Preparation and Discharge Performance of Porous VB2 Anodes for High Capacity VB2-air Battery [J]. Journal of Inorganic Materials, 2017, 32(2): 122-126. |
[3] | MENG Fang-Li, ZHANG Dong-Yun, CHANG Cheng-Kang, XU Jia-Yue, KAMZIN A S. Synthesis and Electrochemical Performance of LiFePO4/C Cathode Materials Using Fe Powder [J]. Journal of Inorganic Materials, 2016, 31(8): 802-806. |
[4] | LIU Jian-Rui,WANG Meng,YIN Da-Chuan,HUANG Wei-Dong. Low-temperature Synthesis of LiV3O8 as Cathode Material for Rechargeable Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2002, 17(3): 617-620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||