Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (2): 130-136.DOI: 10.15541/jim20180158
• RESEARCH PAPER • Previous Articles Next Articles
ZHAO Shi-Huai1, 2, YANG Zi-Bo2, ZHAO Xiao-Ming1, 3, XU Wen-Wen2, WEN Xin2, ZHANG Qing-Yin1, 2
Received:
2018-04-10
Revised:
2018-07-29
Published:
2019-02-20
Online:
2019-01-24
Supported by:
CLC Number:
ZHAO Shi-Huai, YANG Zi-Bo, ZHAO Xiao-Ming, XU Wen-Wen, WEN Xin, ZHANG Qing-Yin. Green Preparation and Supercapacitive Performance of NiCo2S4@ACF Heterogeneous Electrode Materials[J]. Journal of Inorganic Materials, 2019, 34(2): 130-136.
Fig. 2 SEM images of raw materials and composite electrode material(a-b) Pretreatment ACF; (c) NiCo2S4 microspheres; (d) NiCo2S4@ACF precursor; (e-f) NiCo2S4@ACF
Fig. 4 (a) CV characteristics of NiCo2S4@ACF composite electrode materials at different scan rates, (b) GCD curves of NiCo2S4@ACF composite electrodes at various current densities, (c) specific capacitance and (d) Nyquist plots of NiCo2S4@ACF, NiCo2S4@ACF, NiS@ACF and CoS@ACF composite electrodes with inset in (d) showing magnified curves and equivalent circuit
Fig. 5 CV curves (a) of NiCo2S4@ACF electrode and ACF electrode at scan rate of 20 mV/s; and (b) ASC device in different voltage window at 20 mV/s and (c) ASC device in a voltage window of 0-1.6 V at different scan rates, (d) GCD curves and (e) specific capacitance of ASC device at various current densities, and (f) cycling performance of ASC device at current density of 7 A/g
Sample | Energy density/ (Wh∙kg-1) | Power density/ (W∙kg-1) | Ref. |
---|---|---|---|
NiCo2S4@ACF | 49.38 | 800.00 | This work |
NiCo2S4 nanoboxes | 17.10 | 2250.00 | [26] |
NiCo2S4 nanosheets | 45.50 | 512.00 | [17] |
NiCo2S4@graphene | 43.40 | 254.30 | [27] |
NiCo2S4/Ppy | 34.62 | 120.19 | [15] |
NiCo2S4 hollow microsphere | 24.70 | 428.00 | [16] |
NiCo2S4@ NiMoO4/NF | 21.40 | 58.00 | [14] |
NiCo2S4@RGO | 21.90 | 417.10 | [28] |
Table 1 Energy densities and powder densities of different ASC in an aqueous system
Sample | Energy density/ (Wh∙kg-1) | Power density/ (W∙kg-1) | Ref. |
---|---|---|---|
NiCo2S4@ACF | 49.38 | 800.00 | This work |
NiCo2S4 nanoboxes | 17.10 | 2250.00 | [26] |
NiCo2S4 nanosheets | 45.50 | 512.00 | [17] |
NiCo2S4@graphene | 43.40 | 254.30 | [27] |
NiCo2S4/Ppy | 34.62 | 120.19 | [15] |
NiCo2S4 hollow microsphere | 24.70 | 428.00 | [16] |
NiCo2S4@ NiMoO4/NF | 21.40 | 58.00 | [14] |
NiCo2S4@RGO | 21.90 | 417.10 | [28] |
[1] | ZHU Y R, JI X B, WU Z P,et al. Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties. Journal of Power Sources, 2014, 267: 888-900. |
[2] | LIU X H, WEN Z B, WU D B,et al. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. Journal of Materials Chemistry A, 2014, 2(30): 11569-11573. |
[3] | LI Y H, CAO L J, QIAO L,et al. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A, 2014, 2(18): 6540-6548. |
[4] | KOTZ R, CARLEN M.Principles and applications of electrochemical capacitors.Electrochimica Acta, 2000, 45(15): 2483-2498. |
[5] | WU Z S, WANG D W, REN W C,et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials, 2010, 20(20): 3595-3602. |
[6] | YE X D, HU J G, YANG Q,et al. Preparation and properties of NiO/AC asymmetric capacitor. Journal of Inorganic Materials, 2014, 29(3): 250-256. |
[7] | ZHANG L J, GAO B, ZHANG X G.Pyrolysis preparation of nickel oxide and its electrochemical capacitance.Journal of Inorganic Materials, 2011, 26(4): 398-402. |
[8] | SAMO M, TROISI A.Supercapacitors based on high surface area MoS2 and MoS2-Fe3O4 nanostructures supported on physical exfoliated graphite.Journal of Nanoscience and Nanotechnology, 2017, 17(6): 3735-3743. |
[9] | CHANG Y H, HAN G Y, XIAO Y M,et al. Internal tandem flexible and compressible electrochemical capacitor based on polypyrrole/ carbon fibers. Electrochimica Acta, 2017, 257: 335-344. |
[10] | MAIER M A, SURESH BABU R, SAMPAIO D M,et al. Binder- free polyaniline interconnected metal hexacyanoferrates nanocomposites (metal = Ni, Co) on carbon fibers for flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28(23): 17405-17413. |
[11] | PANG H, WEI C Z, MA Y H,et al. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem, 2013, 78(6): 546-553. |
[12] | LIU X B, WU Z P, YIN Y H.Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors.Chemical Engineering Journal, 2017, 323: 330-339. |
[13] | HU Q Q, GU Z X, ZHENG X T,et al. Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chemical Engineering Journal, 2016, 304: 223-231. |
[14] | ZHANG Y, XU J, ZHENG Y Y,et al. NiCo2S4@NiMoO4 core-shell heterostructure nanotube arrays grown on Ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res. Lett., 2017, 12(1): 412-420. |
[15] | YAN M L, YAO Y D, WEN J Q,et al. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces, 2016, 8(37): 24525-24535. |
[16] | ZHU Y R, JI X B, WU Z B,et al. NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor. Electrochimica Acta, 2015, 186: 562-571. |
[17] | SHEN L F, WANG J, XU G Y, et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Advanced Energy Materials, 2015, 5(3): 1400977-1-7. |
[18] | LI D L, GONG Y N, PAN C X.Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.Sci. Rep., 2016, 6: 29788-29794. |
[19] | MA X J, KONG L B, ZHANG W B,et al. Design and synthesis of 3D Co3O4@MMoO4(M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 2014, 130: 660-669. |
[20] | WAN H Z, JIANG J J, YU J W,et al. NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm, 2013, 15(38): 7649-7651. |
[21] | HE X Y, LI R M, LIU J Y, et al. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2018, 334: 1573-1583. |
[22] | ZHANG G X, CHEN Y M, HE Z N,et al. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance. Journal of Inorganic Materials, 2018, 33(3): 289-294. |
[23] | TANG Z, TANG C H, GONG H.A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes.Advanced Functional Materials, 2012, 22(6): 1272-1278. |
[24] | CHEN R N, LIU L, ZHOU J S,et al. High-performance nickel- cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density. Journal of Power Sources, 2017, 341: 75-82. |
[25] | ZHANG Y F, PARK M, KIM H Y,et al. Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density. J. Colloid Interface Sci., 2017, 500: 155-163. |
[26] | HOU L R, HUA H, BAO R Q, et al. Anion-exchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties. ChemPlusChem, 2016, 81(6): 557-563. |
[27] | FENG Y, ZHENG C, YUAN X H,et al. Core-shell structure ultrathin NiCo2S4@graphene as high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6(14): 5856-5861. |
[28] | WANG F P, LI G F, ZHOU Q Q,et al. One-step hydrothermal synthesis of sandwich-type NiCo2S4 @reduced graphene oxide composite as active electrode material for supercapacitors. Applied Surface Science, 2017, 425: 180-187. |
[1] | GAO Wa, XIONG Yujie, WU Congping, ZHOU Yong, ZOU Zhigang. Recent Progress on Photocatalytic CO2 Reduction with Ultrathin Nanostructures [J]. Journal of Inorganic Materials, 2022, 37(1): 3-14. |
[2] | ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure [J]. Journal of Inorganic Materials, 2020, 35(9): 993-998. |
[3] | TAN Shilin,YIN Shunda,OUYANG Gang. Size Effect on the Interface Modulation of Interlayer and Auger Recombination Rates in MoS2/WSe2 van der Waals Heterostructures [J]. Journal of Inorganic Materials, 2020, 35(6): 682-688. |
[4] | LIN hai, SU Weitao, ZHU Yu, PENG Pai, FENG Miao, YU Yan. Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion [J]. Journal of Inorganic Materials, 2020, 35(12): 1349-1356. |
[5] | WEI Ke-Nian, LIU Zhan, ZUO Shi-Xiang, YAN Xiang-Yu, WU Feng-Qin, LI Xia-Zhang, YAO Chao, LIU Xiao-Heng. Preparation of CeO2/Flake-like CdS Composites as High-Performance Photoanodes for Photoelectrochemical Cathodic Protection [J]. Journal of Inorganic Materials, 2019, 34(12): 1334-1340. |
[6] | WANG Chao-Fei, LU Shuang, CHEN Hui-Long, GONG Fei-Long, GONG Yu-Yin, LI Feng. One-pot Synthesis and Application in Asymmetric Supercapacitors of Mn3O4@RGO Nanocomposites [J]. Journal of Inorganic Materials, 2016, 31(6): 581-587. |
[7] | HAN Cheng, LEI Yong-Peng, WANG Ying-De. Recent Progress on Nano-heterostructure Photocatalysts for Solar Fuels Generation [J]. Journal of Inorganic Materials, 2015, 30(11): 1121-1130. |
[8] | LI Ting-Xian, ZHANG Ming, HU Zhou, LI Kuo-She, YU Dun-Bo, YAN Hui. Preparation and Strong Magnetoelectric Effect of Multiferroic BaTiO3/La2/3Sr1/3MnO3 Composite Film [J]. Journal of Inorganic Materials, 2012, 27(3): 291-295. |
[9] | REN Ming-Fang,WANG Hua. Effect of Annealing Temperature on Structure and Properties of Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si Heterostructure [J]. Journal of Inorganic Materials, 2008, 23(4): 700-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||