Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (12): 1343-1348.DOI: 10.15541/jim20180126
• RESEARCH PAPER • Previous Articles Next Articles
LIU Can-Jun1, CHEN Shu1, LI Jie2
Received:
2018-03-22
Revised:
2018-06-21
Published:
2018-12-20
Online:
2018-11-27
About author:
LIU Can-Jun. E-mail: liucanjun@hnust.edu.cn
Supported by:
CLC Number:
LIU Can-Jun, CHEN Shu, LI Jie. CdS/TiO2 Nanocrystalline Films: In-situ Synthesis and Photoelectrochemical Performance[J]. Journal of Inorganic Materials, 2018, 33(12): 1343-1348.
Sample | Rs/(Ω·cm-2) | R1/(Ω·cm-2) |
---|---|---|
1-CdS/TiO2 | 20.43 | 1424.0 |
2-CdS/TiO2 | 14.72 | 629.4 |
Table 1 Simulated values of resistance (Rs) and charge transfer resistance (R1) of EIS plots calculated by equivalent circuit
Sample | Rs/(Ω·cm-2) | R1/(Ω·cm-2) |
---|---|---|
1-CdS/TiO2 | 20.43 | 1424.0 |
2-CdS/TiO2 | 14.72 | 629.4 |
[1] | LU X, XIE S, YANG H,et al. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem. Soc. Rev., 2014, 43(22): 7581-7593. |
[2] | HISATOMI T, KUBOTA J, DOMEN K.Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.Chem. Soc. Rev., 2014, 43(22): 7520-7535. |
[3] | WANG S C, TANG F Q, WANG L Z.Visible light responsive metal oxide photoanodes for photoelectrochemical water splitting: a comprehensive review on rational materials design.J. Inorg. Mater., 2018, 33(2): 173-197. |
[4] | FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode.Nature, 1972, 238(5358): 37-38. |
[5] | WANG G, WANG H, LING Y,et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett., 2011, 11(7): 3026-3033. |
[6] | WANG H L, LIU X H.Preparation of silver nanoparticle loaded mesoporous TiO2 and its photocatalytic property.J. Inorg. Mater., 2016, 31(5): 555-560. |
[7] | ZHANG H, CHENG C.Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance.ACS Energy Lett., 2017, 2(4): 813-821. |
[8] | XIE K, WU Z, WANG M,et al. Room temperature synthesis of CdS nanoparticle-decorated TiO2 nanotube arrays by electrodeposition with improved visible-light photoelectrochemical properties. Electrochem. Commun., 2016, 63: 56-59. |
[9] | LIU C, YANG Y, LI W,et al. A novel Bi2S3 nanowire@TiO2 nanorod heterogeneous nanostructure for photoelectrochemical hydrogen generation. Chem. Eng. J., 2016, 302: 717-724. |
[10] | HUO H, XU Z, ZHANG T,et al. Ni/CdS/TiO2 nanotube array heterostructures for high performance photoelectrochemical biosensing. J. Mater. Chem. A, 2015, 3(11): 5882-5888. |
[11] | XIE Z, LIU X, WANG W,et al. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition. Nano Energy, 2015, 11: 400-408. |
[12] | SUN W T, YU Y, PAN H Y,et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc., 2008, 130(4): 1124-1125. |
[13] | ZHANG H, ZHANG D, QIN X,et al. Three-dimensional CdS-sensitized sea urchin like TiO2-ordered arrays as efficient photoelectrochemical anodes. J. Phys. Chem. C, 2015, 119(50): 27875-27881. |
[14] | LV P, YANG H, FU W,et al. The enhanced photoelectrochemical performance of CdS quantum dots sensitized TiO2 nanotube/ nanowire/nanoparticle arrays hybrid nanostructures. CrystEngComm, 2014, 16(30): 6955-6962. |
[15] | GUO C, HUO H, HAN X,et al. Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal. Chem., 2014, 86(1): 876-883. |
[16] | KELKAR S, BALLAL C, DESHPANDE A,et al. Quantum dot CdS coupled Cd2SnO4 photoanode with high photoelectrochemical water splitting efficiency. J. Mater. Chem. A, 2013, 1(40): 12426-12431. |
[17] | DHIVYA P, PRASAD A K, SRIDHARAN M.Nanostructured perovskite CdTiO3 films for methane sensing.Sens. Actuators B, 2016, 222: 987-993. |
[18] | WANG G, YANG X, QIAN F,et al. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett., 2010, 10(3): 1088-1092. |
[19] | YAO H, FU W, YANG H,et al. Vertical growth of two-dimensional TiO2 nanosheets array films and enhanced photoelectrochemical properties sensitized by CdS quantum dots. Electrochim. Acta, 2014, 125: 258-265. |
[20] | GAO C, ZHANG Z, LI X,et al. Synergistic effects in three-dimensional SnO2/TiO2/CdS multi-heterojunction structure for highly efficient photoelectrochemical hydrogen production. Sol. Energy Mater. Sol. Cells, 2015, 141: 101-107. |
[21] | LIU Y, ZHOU H, ZHOU B,et al. Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation. Int. J. Hydrogen Energy, 2011, 36(1): 167-174. |
[22] | WANG H, BAI Y, ZHANG H,et al. CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. J. Phys. Chem. C, 2010, 114(39): 16451-16455. |
[23] | LEE Y L, CHI C F, LIAU S Y.CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell.Chem. Mater., 2010, 22(3): 922-927. |
[24] | KIM H I, KIM J, KIM W,et al. Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer. J. Phys. Chem. C, 2011, 115(19): 9797-9805. |
[1] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[2] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[3] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[4] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[5] | HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties [J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061. |
[6] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[7] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[8] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[9] | MA Rundong, GUO Xiong, SHI Kaixuan, AN Shengli, WANG Ruifen, GUO Ruihua. S-type Heterojunction of MOS2/g-C3N4: Construction and Photocatalysis [J]. Journal of Inorganic Materials, 2023, 38(10): 1176-1182. |
[10] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[11] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
[12] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[13] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[14] | XU Shichao,ZHU Tianzhe,QIAO Yang,BAI Xuejian,TANG Nan,ZHENG Chunming. Fabrication of Z-scheme BiVO4/GO/g-C3N4 Photocatalyst with Efficient Visble-light Photocatalytic Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 839-846. |
[15] | ZHANG Zhi-Ming,FANG Xiao-Sheng. Preparation and Photodetection Property of ZnO Nanorods/ZnCo2O4 Nanoplates Heterojunction [J]. Journal of Inorganic Materials, 2019, 34(9): 991-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||