无机材料学报 ›› 2020, Vol. 35 ›› Issue (7): 781-788.DOI: 10.15541/jim20190460 CSTR: 32189.14.10.15541/jim20190460
所属专题: 能源材料论文精选(四):光催化与电催化(2020)
王苹,李心宇,时占领,李海涛
收稿日期:
2019-09-04
修回日期:
2019-12-04
出版日期:
2020-07-20
网络出版日期:
2019-12-29
作者简介:
王 苹(1970-), 女, 教授. E-mail: wangping0904@whut.edu.cn基金资助:
WANG Ping,LI Xinyu,SHI Zhanling,LI Haitao
Received:
2019-09-04
Revised:
2019-12-04
Published:
2020-07-20
Online:
2019-12-29
Supported by:
摘要:
本研究采用两步法制备了电子助剂Ag和界面活性位点Ag2O共修饰的高效TiO2光催化剂(TiO2/Ag-Ag2O): 首先用光沉积法将Ag负载在TiO2表面(TiO2/Ag), 再经过低温煅烧法使部分Ag原位生成Ag2O。紫外光照射TiO2时, 激发产生的电子被助剂Ag捕获后快速传输到Ag2O上, 电子把Ag2O界面产氢活性位点从溶液中所捕获的氢离子还原成氢气, Ag和Ag2O的协同作用加快了TiO2上光生电子的转移和界面产氢反应, 从而提高了TiO2/Ag-Ag2O制氢性能。在300 ℃煅烧温度下制备的TiO2/Ag-Ag2O光催化剂制氢速率最高, 达到75.20 μmol/h, 分别是TiO2(3.59 μmol/h)和TiO2/Ag(41.13 μmol/h)的21.0倍和1.8倍。本研究为光催化制氢材料的设计和制备提供了有益的参考。
中图分类号:
王苹,李心宇,时占领,李海涛. Ag与Ag2O协同增强TiO2光催化制氢性能的研究[J]. 无机材料学报, 2020, 35(7): 781-788.
WANG Ping,LI Xinyu,SHI Zhanling,LI Haitao. Synergistic Effect of Ag and Ag2O on Photocatalytic H2-evolution Performance of TiO2[J]. Journal of Inorganic Materials, 2020, 35(7): 781-788.
图1 (A) TiO2/Ag-Ag2O合成示意图和(B)对应样品照片
Fig. 1 (A) Schematic diagram of preparation for TiO2/Ag-Ag2O and (B) their corresponding photographs (a) TiO2-C; (b) TiO2/Ag; (c) TiO2/Ag-Ag2O(200); (d) TiO2/Ag-Ag2O (300); (e) TiO2/Ag-Ag2O(400)
图2 TiO2-C、TiO2/Ag和TiO2/Ag-Ag2O(x)的(A) XRD图谱、(B) 金属Ag的慢扫图谱和(C) Ag2O的慢扫图谱
Fig. 2 (A) XRD patterns, (B) diffraction peaks of metallic Ag and (C) diffraction peaks of Ag2O for TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x)
图3 (A~F) TiO2-C、TiO2/Ag和TiO2/Ag-Ag2O(x)的FESEM照片(插图: EDX谱图和数据)和(G, H) TiO2/Ag-Ag2O(300) 的TEM照片
Fig. 3 (A-F) FESEM images of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x)with insets showing their corresponding EDS spectra and data, and TEM images of TiO2/Ag-Ag2O(300) at low (G) and high (H) magnifications
图4 TiO2-C、TiO2/Ag和TiO2/Ag-Ag2O(x)的(A)XPS全谱和(B)Ag3d谱的高分辨率XPS谱; TiO2/Ag-Ag2O(300)样品的(C)Ag3d和(D)O1s典型峰的拟合曲线
Fig. 4 (A) XPS survey spectra and (B) the high-resolution XPS spectra of Ag3d spectra of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x), and typical fitting curves of (C)Ag3d and (D)O1s for TiO2/Ag-Ag2O(300)
Element | TiO2-C | TiO2/Ag | TiO2/Ag-Ag2O(200) | TiO2/Ag-Ag2O(300) | TiO2/Ag-Ag2O(400) |
---|---|---|---|---|---|
C1s/% | 38.97 | 25.82 | 46.37 | 37.05 | 28.11 |
Ti2p/% | 19.53 | 25.01 | 15.18 | 19.39 | 22.73 |
O1s/% | 41.50 | 48.82 | 38.05 | 42.43 | 46.46 |
Ag3d/% | - | 0.36 | 0.40 | 1.13 | 2.70 |
Ag+/Ag0 | - | 1.02 | 2.15 | 4.42 | 3.52 |
表1 不同样品XPS的元素含量
Table 1 Contents of elements in various samples according to XPS analysis
Element | TiO2-C | TiO2/Ag | TiO2/Ag-Ag2O(200) | TiO2/Ag-Ag2O(300) | TiO2/Ag-Ag2O(400) |
---|---|---|---|---|---|
C1s/% | 38.97 | 25.82 | 46.37 | 37.05 | 28.11 |
Ti2p/% | 19.53 | 25.01 | 15.18 | 19.39 | 22.73 |
O1s/% | 41.50 | 48.82 | 38.05 | 42.43 | 46.46 |
Ag3d/% | - | 0.36 | 0.40 | 1.13 | 2.70 |
Ag+/Ag0 | - | 1.02 | 2.15 | 4.42 | 3.52 |
图5 TiO2-C、TiO2/Ag和TiO2/Ag-Ag2O(x)的UV-Vis吸收光谱及对应样品照片
Fig. 5 UV-Vis absorption spectra of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x) and their corresponding photographs (inset) (a) TiO2-C; (b) TiO2/Ag; (c) TiO2/Ag-Ag2O(200); (d) TiO2/Ag-Ag2O(300); (e) TiO2/Ag-Ag2O(400)
图6 (A) TiO2-C、TiO2/Ag和TiO2/Ag-Ag2O(x)的光催化制氢性能; (B) TiO2/Ag-Ag2O(300)的循环性能
Fig. 6 (A) Photocatalytic H2-evolution activity of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x), and (B) cycling performance of TiO2/Ag-Ag2O(300)
图8 TiO2-C、TiO2/Ag和TiO2/Ag-Ag2O(x)的(A)线性扫描曲线(LSV)、(B)瞬态光电流响应和(C)电化学阻抗谱(EIS)
Fig. 8 (A) Linear sweep voltammetry (LSV) curves, (B) transient photocurrent responses, and (C) electrochemical impedance spectra (EIS) of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x)
[1] |
DU H, LIU Y, SHENG C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chinese Journal of Catalysis, 2017,38(8):1295-1306.
DOI URL |
[2] | ZHANG K, PARK J H. Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. Journal of Physical Chemistry C, 2017,8:199-207. |
[3] |
LIU Q, SHEN J, YU X, et al. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)- codoped and exfoliated ultrathin g-C3N4 nanosheets. Applied Catalysis B: Environmental, 2019,248:84-94.
DOI URL |
[4] |
TIAN L, YANG X, LIU Q, et al. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Applied Surface Science, 2018,455:403-409.
DOI URL |
[5] |
MA Y, LI Q. Preparation and characterization of TiO2/Co3O4 nanocomposites and their photocatalytic activity for hydrogen evolution. Journal of Inorganic Materials, 2016,31(8):841-844.
DOI URL |
[6] |
JIANG Y, QUA F, TIAN L, et al. Self-assembled g-C3N4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency. Applied Surface Science, 2019,487:59-67.
DOI URL |
[7] |
WEI J, LI X, WANG H, et al. Nitrogen doped carbon quantum dots/titanium dioxide composites for hydrogen evolution under sunlight. Journal of Inorganic Materials, 2015,30(9):925-930.
DOI URL |
[8] |
YAN C, XUE X, ZHANG W, et al. Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water. Nano Energy, 2017,39:539-545.
DOI URL |
[9] |
LIU W, SHEN J, LIU Q, et al. Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets. Applied Surface Science, 2018,462:822-830.
DOI URL |
[10] |
TANG H, WANG R, ZHAO C, et al. Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 2019,374:1064-1075.
DOI URL |
[11] |
LI C, JIN H, YANG Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. Journal of Inorganic Materials, 2017,32(04):357-364.
DOI URL |
[12] |
WANG P, LU Y, WANG X, et al. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2. Applied Surface Science, 2017,391:259-266.
DOI URL |
[13] |
ZHANG W, ZHANG H, XU J, et al. 3D flower-like heterostructured TiO2@Ni(OH)2 microspheres for solar photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019,40(3):320-325.
DOI URL |
[14] |
KUMARAVEL V, MATHEW S, BARTIETT J, et al. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Applied Catalysis B: Environmental, 2019,244:1021-1064.
DOI URL |
[15] |
ZHAO D, YANG C F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2016,54:1048-1059.
DOI URL |
[16] |
CHEN F, LUO W, Mo Y, et al. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Applied Surface Science, 2018,430:448-456.
DOI URL |
[17] |
GUPTA B, MELVIN A A, MATTHEWS T, et al. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renewable and Sustainable Energy Reviews, 2016,58:1366-1375.
DOI URL |
[18] |
HOU L, ZHANG M, GUAN Z, et al. Effect of platinum dispersion on photocatalytic performance of Pt-TiO2. Journal of Nanoparticle Research, 2018,20(3):1-8.
DOI URL |
[19] |
SARAVANAN R, MANOJ D, QIN J, et al. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Safety and Environmental Protection, 2018,120:339-347.
DOI URL |
[20] | WANG P, SHENG Y, WANG F, et al. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2 evolution performance: a case study of CdS/Au photocatalyst. Applied Catalysis B: Environmentai, 2018, 220:561-569. |
[21] |
YU H, LIU W, WANG X, et al. Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: a case study of TiO2/Ag-Ag2S photocatalyst. Applied Catalysis B: Environmental, 2018, 225:415-423.
DOI URL |
[22] |
WANG X, LIAO D, YU H, et al. Highly efficient BiVO4 single-crystal photocatalyst with selective Ag2O-Ag modification: orientation transport, rapid interfacial transfer and catalytic reaction. Dalton Transactions, 2018,47(18):6370-6377.
DOI URL PMID |
[23] |
YU H, LIU R, WANG X, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Applied Catalysis B: Environmental, 2012, 111-112:326-333.
DOI URL |
[24] |
LI J, HAO H, ZHOU J, et al. Ag@AgCl QDs decorated g-C3N4 nanoplates: the photoinduced charge transfer behavior under visible light and full arc irradiation. Applied Surface Science, 2017,422:626-637.
DOI URL |
[25] |
KIM J, JUN H, HONG S, et al. Charge transfer in iron photoanode modified with carbon nanotubes for photoelectrochemical water oxidation: an electrochemical impendence study. International Journal of Hydrogen Energy, 2011,36:9462-9468.
DOI URL |
[26] | LIU Y, DING S, SHI Y, et al. Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018,234:106-116. |
[1] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[2] | 贾鑫, 李晋宇, 丁世豪, 申倩倩, 贾虎生, 薛晋波. Pd纳米颗粒协同氧空位增强TiO2光催化CO2还原性能[J]. 无机材料学报, 2023, 38(11): 1301-1308. |
[3] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[4] | 吕庆洋, 张玉亭, 顾学红. 超声辅助溶胶-凝胶法制备中空纤维TiO2超滤膜[J]. 无机材料学报, 2022, 37(10): 1051-1057. |
[5] | 肖翔, 郭少柯, 丁成, 张志洁, 黄海瑞, 徐家跃. CsPbBr3@TiO2核壳结构纳米复合材料用作水稳高效可见光催化剂[J]. 无机材料学报, 2021, 36(5): 507-512. |
[6] | 席文, 李海波. TiO2/Ti3C2Tx复合材料的制备及其杂化电容脱盐特性的研究[J]. 无机材料学报, 2021, 36(3): 283-291. |
[7] | 刘彩, 刘芳, 黄方, 王晓娟. 海藻基CDs-Cu-TiO2复合材料的制备及其光催化性能[J]. 无机材料学报, 2021, 36(11): 1154-1162. |
[8] | 李翠霞, 孙会珍, 金海泽, 史晓, 李文生, 孔文慧. 3D多级孔rGO/TiO2复合材料的构筑及其光催化性能研究[J]. 无机材料学报, 2021, 36(10): 1039-1046. |
[9] | 季邦, 赵文锋, 段洁利, 马立哲, 付兰慧, 杨洲. 泡沫镍网负载TiO2/WO3薄膜对乙烯的光催化降解[J]. 无机材料学报, 2020, 35(5): 581-588. |
[10] | 王旭聪, 邓浩, 姜忠义, 袁立永. 不同N源无定形TiO2/g-C3N4光催化还原Re(VII)性能[J]. 无机材料学报, 2020, 35(12): 1340-1348. |
[11] | 刘金云, 张玉亭, 洪周, 刘华, 王圣贤, 顾学红. 共挤出法制备双层中空纤维陶瓷复合膜[J]. 无机材料学报, 2020, 35(12): 1333-1339. |
[12] | 陈浩禹, 张亦文, 吴忠, 秦真波, 吴姗姗, 胡文彬. 强磁靶共溅射法制备具有室温磁电阻特性的Co-TiO2纳米复合薄膜[J]. 无机材料学报, 2020, 35(11): 1263-1267. |
[13] | 吕喜庆, 张环宇, 李瑞, 张梅, 郭敏. Nb2O5包覆对TiO2纳米阵列/上转换发光复合结构柔性染料敏化太阳能电池性能的影响[J]. 无机材料学报, 2019, 34(6): 590-598. |
[14] | 简刚, 刘美瑞, 张晨, 邵辉. 用于高介电复合材料的全包裹Ag@TiO2填充颗粒的制备[J]. 无机材料学报, 2019, 34(6): 641-645. |
[15] | 庞秋虎,廖光福,胡晓宇,张全元,徐祖顺. 多孔竹炭/二氧化钛纳米复合材料制备及其光催化作用[J]. 无机材料学报, 2019, 34(2): 219-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||