[1] |
MYRIAM H, ROBERT G, WOLFGANG T.Stable amorphous calcium oxalate: synthesis and potential intermediate in biomineralization.Chem. Commun., 2014, 50(49): 6534-6536.
|
[2] |
XU A W, MA Y, CÖLFEN H. Biomimetic mineralization.J. Mater. Chem., 2007, 17(5): 415-449.
|
[3] |
FRANCESCHI V R, NAKATA P A.Calcium oxalate in plants: formation and function.Ann. Rev. Plant Biol., 2005, 56: 41-71.
|
[4] |
LI X L, ZHANG W J, LU J W, et al. Calcium oxalate biomineralization in plants (in Chinese). Chin. Sci. Bull., 2012, 57: 2443-2455.
|
[5] |
ZHANG J, KAUR J, RAJKHOWA R, et al. Mechanical properties and structure of silkworm cocoons: a comparative study of bombyx mori, antheraea assamensis, antheraea pernyi and antheraea mylitta silkworm cocoons. Mat. Sci. Eng. C-Mater., 2013, 33(6): 3206-3213.
|
[6] |
ROY M, MEENA S K, KUSURKAR T S, et al. Carbondioxide gating in silk cocoon. Biointerphases, 2012, 7(1-4): 1-11.
|
[7] |
LIU Q, ZHANG B J.Bioinspired preparation of a protective biomineralized material on the surfaces of historic stones. Acta Chimica Sinica, 2006, 64(15): 1601-1605.
|
[8] |
SUN X Z, SHEN L M, CONG X M, et al. Infrared spectroscopic analysis of 5,248 urinary stones from Chinese patients presenting with the first stone episode. Urol. Res., 2011, 39: 339-343.
|
[9] |
WANG B, WU B, LIU J, et al. Analysis of altered microRNA expression profiles in proximal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: implications for kidney stone disease. PLOS One, 2014, 9(7): e101306.
|
[10] |
FARMANESH S, RAMAMOORTHY S, CHUNG J, et al. Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J. Am. Chem. Soc., 2014, 136(1): 367-376.
|
[11] |
PEDRAZA C E, CHIEN Y C, MCKEE M D.Calcium oxalate crystals in fetal bovine serum: implications for cell culture, phagocytosis and biomineralization studies in vitro. J. Cell Biochem., 2008, 103: 1379-1393.
|
[12] |
YUEN J W M, GOHEL M D I. The initial and subsequent inflammatory events during calcium oxalate lithiasis.Clin. Chim. Acta, 2010, 411: 1018-1026.
|
[13] |
OUYANG J M, XIA Z Y, ZHANG G N, et al. Nanocrystallites in urine and their relationship with the formation of kidney stones. Rev. Inorg. Chem., 2012, 32(2/3/4): 101-110.
|
[14] |
XIA Z Y, DING Y M, OUYANG J M. Comparison of urinary crystallites from patients with renal calculi with that from healthy subjects. Adv. Mater. Res., 2012, 554-556: 1738-1741.
|
[15] |
SARLO K, BLACKBURN K L, CLARK E D, et al. Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology, 2009, 263: 117-126.
|
[16] |
HU Q H, CAI Y R, SHI Z L, et al. Inhibition of proliferation of osteosarcoma by nano calcium phosphates: potential hard tissue repair after tumor extraction. Front. Mater. Sci. China, 2007, 1(1): 30-34.
|
[17] |
LI Y, SUN L, JIN M H, et al. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicol. in Vitro, 2011, 25(7): 1343-1352.
|
[18] |
THONGBOONKERD V, SEMANGOEN T, CHUTIPONGTANATE S.Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature.Clin. Chim. Acta, 2006, 367: 120-131.
|
[19] |
VANACHAYANGKUL P, BYER K, KHAN S, et al. An aqueous extract of Ammi visnaga fruits and its constituents khellin and visnagin prevent cell damage caused by oxalate in renal epithelial cells. Phytomedicine, 2010, 17: 653-658.
|
[20] |
MARCUS H, FAHIM E, MARCO K, et al. Propidium iodide staining: a new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain. Micron, 2012, 43: 1031-1038.
|
[21] |
MENG H, XIA T, GEORGE S, et al. A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano, 2009, 3(7): 1620-1627.
|
[22] |
CHIEN Y C, MASICA D L, GRAY J J, et al. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning. J. Biol. Chem., 2009, 284(35): 23491-23501.
|
[23] |
VERKOELEN C F, VERHULST A.Proposed mechanisms in renal tubular crystal retention. Kidney Inter., 2007, 72(1): 13-18.
|
[24] |
NEL A, XIA T, MÄDLER L, et al. Toxic potential of materials at the nanolevel. Science, 2006, 311: 622-627.
|
[25] |
SHENG X, WARD M D, WESSON J A.Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J. Am. Soc. Nephrol., 2005, 16: 1904-1908.
|
[26] |
ASSELMAN M, VERHULST A, DE BROE M E, et al. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J. Am. Soc. Nephrol., 2003, 14: 3155-3166.
|
[27] |
TUNIK L, FUREDI-MILHOFER H, GARTI N.Adsorption of sodium diisooctyl sulfosuccinate onto calcium oxalate crystals.Langmuir, 1998, 14: 3351-3355.
|
[28] |
RABINOVICH Y I, ESAYANUR M, DAOSUKHO S, et al. Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation. J. Colloid Interf. Sci., 2006, 300: 131-140.
|