[1] |
FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007, 90(5): 1347-1364.
|
[2] |
ENNETI R K, CARNEY C, PARK S J, et al. Taguchi analysis on the effect of process parameters on densification during spark plasma sintering of HfB2-20SiC. Int. J. Refract.Met. H., 2012, 31: 293-296.
|
[3] |
SILVESTRONI L, SCITI D. Effects of MoSi2 additions on the properties of Hf- and Zr-B2 composites produced by pressureless sintering. Scripta. Mater., 2007, 57(2): 165-168.
|
[4] |
NI D W, LIU J X, ZHANG G J. Pressureless sintering of HfB2-SiC ceramics doped with WC. J. Eur. Ceram. Soc., 2012, 32(13): 3627-3635.
|
[5] |
ZHANG S C, HILMAS G E, FAHRENHOLTZ W G. Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J. Am. Ceram. Soc., 2008, 91(11): 3530-3535.
|
[6] |
ZHANG S C, HILMAS G E, FAHRENHOLTZ W G. Oxidation of zirconium diboride with tungsten carbide additions. J. Am. Ceram. Soc., 2011, 94(4): 1198-1205.
|
[7] |
CARNEY C M, PARTHASARATHY T A, CINIBULK M K. Oxi-dation resistance of hafnium diboride ceramics with additions ofsilicon carbide and tungsten boride or tungsten carbide. J. Am. Ceram. Soc., 2011, 94(8): 2600-2607.
|
[8] |
HU D L, ZHENG Q, GU H, et al. Role of WC additive on reaction, solid-solution and densification in HfB2-SiC ceramics. J. Eur. Ceram. Soc., 2014, 34(3): 611-619.
|
[9] |
ZHENG Q, WANG X H, XING J J, et al. Quantitative analysis for phase compositions of ZrB2-SiC-ZrC ultra-high temperature ceramic composites. J. Inorg. Mater., 2013, 28(4): 358-362.
|
[10] |
DENTON A R, ASHCROFT N W. Vegard’s law. Phys. Rev. A, 1991, 43(6): 3161-3164.
|
[11] |
AKSELRUD L G, ZAVALII P Y, GRIN Y N, et al. Use of the CSD program package for structure determination from powder data. Mater. Sci. Forum, 1993, 133: 335-342.
|
[12] |
CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Crystallogr., 1974, 7(6): 519-525.
|
[13] |
CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J. Appl. Crystallogr., 1974, 7(6): 526-531.
|
[14] |
CHUNG F H. Quantitative interpretation of X-ray-diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. J. Appl. Crystallogr., 1975, 8(1): 17-19.
|
[15] |
ZARUBOVA N, WOLF P, CERMAK J, et al. Quantitative phase analysis of metastable structure in a laser melted Fe-C alloy: Part I Structural analysis of single melted tracks by SEM and TEM. J. Mater. Sci., 1996, 31(1): 137-143.
|
[16] |
ECKERLIN P, KANDLER H. Structure Data of Elements and Intermetallic Phases, first edition. New York: Springer Berlin Heidelberg, 1971: 94-109.
|
[17] |
PDF-2 Data Base: No. 65-3387, 73-1663 and 65-0975.
|
[18] |
ZOU J, ZHANG G J, KAN Y M, et al. Pressureless densification of ZrB2-SiC composites with vanadium carbide. Scripata. Mater., 2008, 59(3): 309-312.
|
[19] |
MONTEVERDE F, BELLOSI A. Microstructure and properties of an HfB2-SiC compostes for ultra high temperature application. Adv. Eng. Mater., 2004, 6(5): 331-336.
|
[20] |
WACHTMAN J B, CANNON W R, MATTHEWSON M J. Mechanical Properties of Ceramics, second edition. USA: John Wiley & Sons, Inc. , 2009: 151-176.
|