[1] |
LOPEZ-CUDERO A, VIDAL-IGLESIAS F J, SOLLA-GULLON J, et al. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. Phys. Chem. Chem. Phys., 2009, 11: 416-426.
|
[2] |
RICE C, HA S, MASEL R I, et al. Catalysts for direct formic acid fuel cells. J. Power Sources, 2003, 115(2): 229-235.
|
[3] |
HAAN J L, STAFFORD K M, MASEL R I. Effects of the addition of antimony, tin, and lead to palladium catalyst formulations for the direct formic acid fuel cell. J. Phys. Chem. C, 2010, 114(26): 11665-11672.
|
[4] |
YU X, PICKUP P G. Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation. Electrochem. Com-mun., 2009, 11(10): 2012-2014.
|
[5] |
YU X, PICKUP P G. Deactivation resistant PdSb/C catalysts for direct formic acid fuel cells. Electrochem. Commun., 2010, 12(6): 800-803.
|
[6] |
LIU X, QIN D, FAN Y, et al. An alternative electrolyte based on ace-tylacetone-pyridine-iodine for dye-sensitized solar cells. Electro-chem. Commun., 2007, 9(7): 1735-1738.
|
[7] |
FENG L, SUN X, LIU C, et al. Poisoning effect diminished on a novel PdHoOx/C catalyst for the electrooxidation of formic acid. Chem. Commun., 2012, 48(3): 419-421.
|
[8] |
GEIM A K, NOVOSELOV K S. The rise of graphene. Nat. Mater., 2007, 6(3): 183-191.
|
[9] |
GEIM A K. Graphene: status and prospects. Science, 2009, 324: 1530-1534.
|
[10] |
GENG T F, LIN T, MIN Z, et al. One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene. Nanoscale, 2013, 5: 8007-8014.
|
[11] |
HU C G, ZHAO Y, CHENG H H, et al. Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxidation of formic acid. Chem. Commun., 2012, 48(97): 11865-11867.
|
[12] |
JIANG Y Y, LU Y Z, LI F H, et al. Facile electrochemical codeposition of “clean” grapheme-Pd nanocomposite as an anode catalyst for formic acid electrooxidation. Electrochem. Commun., 2012, 19: 21-24.
|
[13] |
YANG J, TIAN C G, WANG L, et al. In situ reduction, oxygen etching, and reduction using formic acid: an effective strategy for controllable growth of monodisperse palladium nanoparticles on graphene. Chem. Plus. Chem., 2012, 77(4): 301-307.
|
[14] |
KOZHEVNIKOV I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev., 1998, 98(1): 171-198.
|
[15] |
WEINSTOCK I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chem. Rev., 1998, 98(1):113-170.
|
[16] |
KIM W B, VOITL T, RODRIGUEZ-RIVERA G J, et al. Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts. Science, 2004, 305(5688 ): 1280-1283.
|
[17] |
KIM W B, VOITL T, RODRIGUEZ-RIVERA G J, et al. Preferential oxidation of CO in H2 by aqueous polyoxometalates over metal catalysts. Angew. Chem. Int. Ed, 2005, 44(47): 778-782.
|
[18] |
FERRELL III J R, KUO M C, TURNER J A, et al. The use of the heteropoly acids, H3PMo12O40 and H3PW12O40, for the enhanced electrochemical oxidation of methanol for direct methanol fuel cells. Electrochim. Acta, 2008, 53(14): 4927-4933.
|
[19] |
ZENG Q O, CHENG J S, TANG L H, et al. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv. Funct. Mater., 2010, 20(19): 3366-3372.
|
[20] |
WILLIAM S HUMMERS JR, RICHARD E OFFEMAN. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6):1339.
|
[21] |
LI H L, PANG S P, FENG X L, et al. Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation. Chem. Commun., 2010, 46(34): 6243-6245.
|
[22] |
SHEN YU-JIE, SHEN JUAN-ZHANG, LI HUAN-ZHI, et al. Effect of electrolyte on electrocatalytic performance of carbon supported Pd CATALYST FOR FORMIC ACID OXIDation. Chinese Journal of Inorganic Chemistry, 2011, 27(7): 1383-1387.
|
[23] |
BRUN M, BERTHET A, BERTOLINI J C.XPS, AES and Auger parameter of Pd and PdO. J. Electron. Spectrosc. Relat. Phenom. , 1999, 104(1): 55-60.
|
[24] |
XIAO L H, SUN K P, XU X L, et al. Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition- precipitation method. Catal. Commun., 2005, 6(12): 796-801.
|
[25] |
JIN T, GUO S, ZUO J L, et al. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale, 2013, 5: 160-163.
|
[26] |
ZHAO X, ZHU J, LING L, et al. Enhanced electroactivity of Pd nanocrystals supported on H3PMo12O40/carbon for formic acid electrooxidation. J. Power Sources, 2012, 210: 392-396.
|
[27] |
GUO X, GUO D J, WANG J S, et al. Using phosphomolybdic acid (H3PMo12O40) to efficiently enhance the electrocatalytic activity and CO-tolerance of platinum nanoparticles supported on multi- walled carbon nanotubes catalyst in acidic medium. J. Electroanal. Chem. , 2010, 638(1):167-172.
|