[1] |
O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740.
|
[2] |
Yella Aswani, Lee Hsuan-Wei, Tsao Hoi Nok, et al. Porphyrin- sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency. Science, 2011, 334(6056): 629-634.
|
[3] |
Ito Seigo, Murakami Takurou N, Comte Pascal, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613-4619.
|
[4] |
Varghese Oomman K, Paulose Maggie, Grimes Craig A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnology, 2009, 4(9): 592-597.
|
[5] |
Kuang Daibin, Brillet Jeremie, Chen Peter, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano, 2008, 2(6): 1113-1116.
|
[6] |
Allam Nageh K, Shankar Karthik, Grimes Craig A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. Journal of Materials Chemistry, 2008, 18(20): 2341-2348.
|
[7] |
Kang Soon Hyung, Kim Hyun Sik, Kim Jae-Yup, et al. An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells. Nanotechnology, 2009, 20(35): 355307-1-6.
|
[8] |
Liu Zhaoyue, Zhang Xintong, Nishimoto Shunsuke, et al. Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. Journal of Physical Chemistry C, 2008, 112(1): 253-259.
|
[9] |
Li Hongyi, Wang Jinshu, Huang Kelin, et al. In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method. Materials Letters, 2011, 6 5(8): 1188-1190.
|
[10] |
Raja K S, Gandhi T, Misra M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications, 2007, 9(5): 1069-1076.
|
[11] |
Paulose Maggie, Shankar Karthik, Yoriya Sorachon, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. Journal of Physical Chemistry B, 2006, 110(33): 16179-16184.
|
[12] |
Jin Xiao Yan, Liu Zhi Yong, Lu Yu Ming, et al. Enhanced conversion efficiency in dye-sensitized solar cells with nanocomposite photoanodes. Journal of Physics D: Applied Physics, 2011, 44(25): 255103-1-5.
|
[13] |
Park J H, Lee T W, Kang M G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, 2008(25): 2867-2869.
|
[14] |
Bai Yu, Park Song, Park Hyeoung Ho, et al. The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis., 2011, 43(6): 998-1005.
|
[15] |
Zhu Kai, Neale Nathan R, Miedaner Alexander, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69-74.
|
[16] |
Natu Gayatri, Huang Zhongjie, Ji Zhiqiang, et al. The effect of an atomically deposited layer of alumina on NiO in P-type dye sensitized solar cells. Langmuir, 2012, 28(1): 950-956.
|
[17] |
Han Liyuan, Koide Naoki, Chiba Yasuo, et al. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie, 2006, 9(5/6): 645-651.
|
[18] |
Chen You-Han, Huang Kuan-Chieh, Chen Jian-Ging, et al. Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells. Electrochimica Acta, 2011, 56(23): 7999-8004.
|
[19] |
Chen Qingwei, Xu Dongsheng. Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. Journal of Physical Chemistry C, 2009, 113(15): 6310-6314.
|
[20] |
Roy Poulomi, Kim Doohun, Paramasivam Indhumati, et al. Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochemistry Communications, 2009, 11(5): 1001-1004.
|