[1]Nuzhnyy D, Kamba S, Kuzel P, et al. Dynamics of the phase transitions in Bi-layered ferroelectrics with aurivillius structure, dielectric response in the terahertz spectral range. Phys.Rev. B: Conden. Matter and Mater.Phys., 2006, 74(13): 134105-1-7.
[2]Adamczyk M, Ujma Z, Pawe czyk M. Dielectric properties of BaBi2Nb2O9 ceramics.J. Mater. Sci,2006, 41(16):5317-5322
[3]Debasis D, Tanmay G K, Panchanan P. Studies of dielectric characteristics of BaBi2Nb2O9 ferroelectrics prepared by chemical precursor decomposition method.Solid State Sciences,2007, 9(1):57-64
[4]Venkataraman B H, Fujiwara T, Komatsu T. Synthesis and characterization of rare-earth doped SrBi2Nb2O9 phase in lithium borate based nanocrystallized glasses.J. Solid State Chem,2009, 182(6):1538-1544
[5]Kennedy B J, Hunter B A. Cation disorder in Pb-doped SrBi2Nb2O9.Chem. Mater,2001, 13(12):4612-4617
[6]Asai T, Camargo E R, Kakihana M, et al. A novel aqueous solution route to the low-tempe rature synthesis of SrBi2Nb2O9 by use of water-soluble Bi and Nb complexes.J. Alloys & Compound,2000, 309(1/2):113-117
[7]赵九蓬, 强亮生, 张 蕾(ZHAO Jiu-Peng, et al). 有机凝胶法制备Sr0.5Ba0.5Nb2O6铁电薄膜及其电性能研究. 无机材料学报(Journal of Inorganic Materials), 2005, 20(1): 144-145.
[8]Gu H S, Zhang T J, Cao W Q, et al. Structure characterization of BiFeO3- SrBi2Nb2O9 ceramics by mechanical activation.Mater. Sci. Eng. B,2003, 99(1/2/3):116-120
[9]Ortega N, Bhattacharya P, Katiyar R S. Enhanced ferroelectric properties of multilayer SrBi2Ta2O9/SrBi2Nb2O9 thin films for NVRAM applications.Mater. Sci. Eng. B,2006, 130(1/2/3):36-40
[10]Zhang W F, Zhang M S, Yin Z, et al. Large third-order optical nonlinearity in SrBi2Ta2O9 thin films by pulsed laser deposition.Appl. Phys. Lett,1999, 75(4):902-904
[11]Shi F W, Meng X J, Wang G S, et al. The third-order optical nonlinearity of Bi3.25La0.75 -Ti3O12 ferroelectric thin film on quartz. Thin Solid Films, 2006, 496(2): 333-335.
[12]Song R, Guan D Y, Ma L B, et al. Exception ally large third-order optical susceptibility in Ag: SrBi2Nb2O9 composite films.Mater. Lett,2007, 61(7):1537-1540
[13]Sugimoto W, Shirata M, Sugahara Y, et al. New conversion reaction of an aurivillius phase into the protonated form of the layered perovskite by the selective leaching of the bismuth oxide sheet.J. Am. Chem. Soc,1999, 121(25):11601-11602
[14]Kudo M, Tsuzuki S, Katsumata K I, et al. Effects of selective leaching of bismuth oxide sheets in triple-layered aurivillius phases on their photocatalytic activities.Chem. Phys. Lett,2004, 393(1/2/3):12-16
[15]Tsunoda Y, Sugimoto W, Sugahara Y. Intercalation behavior of n-alkylamines into a protonated form of a layered perovskite derived from aurivillius phase Bi2SrTa2O9.Chem. Mater,2003, 15(3):632-635
[16]Ida S, Ogata C, Unal U, et al. Preparation of a blue luminescent nanosheet derived from layered perovskite Bi2Sr2Ta2O9.J. Am. Chem. Soc,2007, 129(30):8956-8957
[17]Shimizu K I, Itoh S, Hatamachi T, et al. Pillaring of ruddlesden- popper perovskite tantalates, H2ATa2O7 (A = Sr or La2/3), with n-alkylamines and oxide nanoparticles.J. Mater. Chem,2006, 16(8):773-779
[18]Ismunandar, Kennedy B J, Marsongkohadi G. Structure of ABi2Nb2O9 (A = Sr, Ba): refinement of powder neutron diffraction data.J. Solid State Chem,1996, 126(1):135-141
[19]Charles F B, Jr Robert E. Mesmer: The hydrolysis of cations. USA: John Wiley & Sons, Inc., 1976: 288-294.
[20]Tsunoda Y, Shirata M, Sugimot W, et al. Preparation and hrem characterization of a protonated form of a layered perovskite tantalate from an aurivillius phase Bi2SrTa2O9 via acid treatment.Inorg. Chem,2001, 40(23):5768-5771
[21]Eβmann R. Influence of coordination on N-H...X- hydrogen bonds. part 1. [Zn(NH3)4]Br2 and [Zn(NH3)4]I2. J. Molecular Struct., 1995, 356(3): 201-206.
[22]Tschurl M, Boesl U. IR-photodissociation and photodetachment spectroscopy of Cl-(NH3)x (IR: x = 1-4, PD: x = 1).Chem. Phys. Lett,2008, 456(4/5/6):150-155
[23]Lu Y J, Lalancette R, Beer R H. Deoxygenation of polynuclear metal oxo anions: synthesis, structure, and reactivity of the condensed polyoxoanion [(C4H9)4N]4 (NbW5 O18)2O.Inorg. Chem,1996, 35(9):2524-2529
[24]Dussauze E, Kamitsos E I, Fargin E, et al. Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium-niobium borophosphate glasses.J. Phys. Chem. C,2007, 111(39):14560-14566
[25]Machida M, Mitsuyaman T, Ikeue K. Photocatalytic property and electronic structure of triple-layered perovskite tantalates, MCa2Ta3O10 (M = Cs, Na, H, and C6H13NH3).J. Phys. Chem. B,2005, 109(16):7801-7806
[26]Narendar Y, Messing G L. Synthesis, decomposition and crystallization characteristics of peroxo-citrato-niobium: an aqueous niobium precursor.Chem. Mater,1997, 9(2):580-587
[1] |
朱治昱, 焦艳, 邵冲云, 何冬兵, 胡丽丽. γ辐照及热退火对光热折变玻璃光学性能的影响[J]. 无机材料学报, 2021, 36(5): 521-526. |
[2] |
杨言言, 李永国, 祝小雯, 杜晓, 马旭莉, 郝晓刚. 电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子[J]. 无机材料学报, 2021, 36(3): 292-298. |
[3] |
孔祥力, 邱鸣慧, 杨璐, 王安然, 范益群, 孔德双, 谷昌军, 宦秀桦, 孔令仁. 利用含有模板剂的SAPO-34分子筛制备高效铜基催化剂[J]. 无机材料学报, 2018, 33(9): 956-962. |
[4] |
郑国源, 李家成, 宋力昕, 张涛. 基于时域有限差分法的ESP玻璃的钾离子浓度分布的模拟[J]. 无机材料学报, 2018, 33(6): 693-698. |
[5] |
杨修春. 离子交换和热处理对贵金属掺杂硅酸盐玻璃光致发光的影响[J]. 无机材料学报, 2016, 31(10): 1039-1045. |
[6] |
马向荣, 刘宗怀. 柠檬酸三钠对Co2+-Ni2+-Fe3+-CO32- LDHs形貌及其离子交换性能的影响[J]. 无机材料学报, 2014, 29(12): 1306-1312. |
[7] |
张 鹤, 周珏辉, 张启龙, 杨 辉. ZrO2-SiO2薄膜对离子交换增强玻璃的光学和力学性能影响[J]. 无机材料学报, 2013, 28(7): 785-779. |
[8] |
张晓萍, 兰 章, 陈 琳, 高素雯, 吴晚霞, 阙兰芳, 张晓佩. 硫化亚锡敏化纳晶TiO2膜的制备及光电性能研究[J]. 无机材料学报, 2013, 28(10): 1093-1097. |
[9] |
郑 斌, 郝寅雷, 李宇波, 杨建义, 江晓清, 周 强, 王明华. 玻璃基掩埋式光波导堆栈的制作与表征[J]. 无机材料学报, 2012, 27(9): 906-910. |
[10] |
赵彦钊, 郭文姬, 王 兰. 头孢拉定/蒙脱石插层化合物的制备[J]. 无机材料学报, 2012, 27(6): 655-659. |
[11] |
吴 伟, 原恩临, 曾 毅, 刘紫微, 林初城, 李永生. 含钯羟基磷灰石的表征及其对苯甲醇的绿色催化氧化性能研究[J]. 无机材料学报, 2012, 27(12): 1289-1293. |
[12] |
吴士超, 郭云霞,周建华, 赵建庆,丁晓春, 何建平. 高温热处理对水热离子交换法制备钛酸锂纳米棒的结构和性能影响[J]. 无机材料学报, 2011, 26(2): 123-128. |
[13] |
李 圭, 钟 玲, 袁 霞, 吴 剑, 罗和安. Sn掺杂MCM-41介孔分子筛的制备、表征及催化性能研究[J]. 无机材料学报, 2010, 25(10): 1041-1046. |
[14] |
郝寅雷,郑伟伟,江舒杭,谷金辉,孙一翎,杨建义,李锡华,周 强,江晓清,王明华. 低损耗离子交换玻璃基光波导制备与分析[J]. 无机材料学报, 2009, 24(5): 1041-1044. |
[15] |
王金淑,李辉,殷澍,佐藤次雄. H2Ti4O9纳米晶的制备与表征[J]. 无机材料学报, 2007, 22(5): 843-846. |
|