无机材料学报 ›› 2024, Vol. 39 ›› Issue (4): 432-440.DOI: 10.15541/jim20230440 CSTR: 32189.14.10.15541/jim20230440
所属专题: 【信息功能】敏感陶瓷(202409)
甄明硕1,2(), 刘晓然1,2, 范向前2, 张文平2, 严东东1, 刘磊2, 李晨1(
)
收稿日期:
2023-09-26
修回日期:
2023-12-12
出版日期:
2024-04-20
网络出版日期:
2024-01-08
通讯作者:
李 晨, 教授. E-mail: lichen@nuc.edu.cn作者简介:
甄明硕(1997-), 男, 硕士研究生. E-mail: zms13315690479@163.com
基金资助:
ZHEN Mingshuo1,2(), LIU Xiaoran1,2, FAN Xiangqian2, ZHANG Wenping2, YAN Dongdong1, LIU Lei2, LI Chen1(
)
Received:
2023-09-26
Revised:
2023-12-12
Published:
2024-04-20
Online:
2024-01-08
Contact:
LI Chen, professor. E-mail: lichen@nuc.edu.cnAbout author:
ZHEN Mingshuo (1997-), male, Master candidate. E-mail: zms13315690479@163.com
Supported by:
摘要:
近年来, 湿度传感器在食品安全、土壤监测等领域的应用引起了广泛关注。传统湿度传感器具有稳定性好、灵敏度高等优点, 但大部分湿度传感系统通常采用有线连接和外接庞大设备来将湿度信号转换为可识别的波形, 无法对湿度信息的变化进行实时的可视化监测。将湿度信息直接转换为肉眼可观测的颜色信号为上述问题提供了一种理想解决方案。本研究将湿度传感器与电致变色器件集成一体来制备智能可视化湿度指示系统, 通过将湿度信号转换为电压信号来驱动电致变色器件(Electrochromic devices, ECDs), 从而实现系统稳定可逆的颜色变化。采用三氧化钨(WO3)作为负极、锌箔(Zn)作为正极制备的ECDs会根据湿度传感器的输出电压的变化来转变不同的工作状态, 从而产生肉眼可观测的颜色信号。采用紫外-可见分光光度计与电化学工作站对ECDs的电化学性能以及电致变色性能进行研究和表征。随后, 通过示波器和湿度发生平台对调理电路性能进行分析。结果表明: 智能电致变色型湿度指示器具有良好的稳定性和快速的响应性能, 其中, 着色时间与褪色时间仅为7.5和4.5 s, 并且在300个循环后, 光学调制幅度(ΔT)与初始值相比基本保持不变(保持率可达95%以上)。因此, 这种设计新颖、结构简单的可视化湿度系统在人工智能、智能农业等领域具有广阔的应用前景。
中图分类号:
甄明硕, 刘晓然, 范向前, 张文平, 严东东, 刘磊, 李晨. 电致变色型智能可视化湿度系统[J]. 无机材料学报, 2024, 39(4): 432-440.
ZHEN Mingshuo, LIU Xiaoran, FAN Xiangqian, ZHANG Wenping, YAN Dongdong, LIU Lei, LI Chen. Electrochromic Intelligent Visual Humidity Indication System[J]. Journal of Inorganic Materials, 2024, 39(4): 432-440.
图1 WO3的形貌表征及性能
Fig. 1 Characterization and performance of WO3 (a) SEM image of WO3; (b) XRD pattern of WO3; (c) XPS spectrum of WO3 thin film in the binding energy range of 0-1200 eV; (d) CV curves at different scanning speeds; (e) Transmission spectra of WO3 in bleached and colored states (photos of WO3 in different states in the illustration); (f) 2000 cycles performance of WO3
图2 电致变色器件的电致变色性能
Fig. 2 Electrochromic performance of ECDs (a) Changes in transmittance at different voltages of 300-900 nm wavelengths; (b) Changes in corresponding transmittance at different voltages; (c) Response time of ECDs; (d) Stability of electrochromic performance of ECDs; (e) Optical images of ECDs at different voltages
图5 调理电路的性能
Fig. 5 Performance of conditioning circuits (a) Circuit diagram of the conditioning circuits; (b) Circuit performance testing platform; (c) Voltage changes at different humidities; (d) Voltage stability at different humidities
图6 电致变色型智能可视化湿度指示系统的性能测试
Fig. 6 Performance testing of an electrochromic intelligent visual humidity indicator system (a) Structure of testing platform; (b) Color change of ECDs at different humidity conditions; (c) Transmittance under different humidity environments; (d) Stability performance of transmittance at different humidity conditions Colorful figures are available on website
图S1 (a)电致变色器件在不同扫速下的CV曲线和(b)不同电流密度下的充放电曲线
Fig. S1 (a) CV curves of ECDs at different scanning speeds and (b) charge-discharge curves under different current densities
[1] |
WANG G X, PEI Z B, YE C H. Inkjet-printing and performance investigation of self-powered flexible graphene oxide humidity sensors. Journal of Inorganic Materials, 2019, 34(1): 114.
DOI URL |
[2] | YANG J, SHI R, LOU Z, et al. Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small, 2019, 15(38): e1902801. |
[3] |
BORINI S, WHITE R, WEI D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano, 2013, 7: 11166.
DOI PMID |
[4] |
WANG Y, HOU S, LI T, et al. Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS Applied Materials Interfaces, 2020, 12(37): 41896.
DOI URL |
[5] |
ZHANG W, LI H, ELEZZABI A Y. Electrochromic displays having two-dimensional CIE color space tunability. Advanced Functional Materials, 2021, 32(7): 2108341.
DOI URL |
[6] |
LI C, ZHEN M, SUN B, et al. Towards two-dimensional colortunability of all-solid-state electrochromic devices using carbon dots. Frontiers in Chemistry, 2022, 10: 1001531.
DOI URL |
[7] |
LI C, ZHEN M, WANG K, et al. Temperature sensors integrated with an electrochromic readout toward visual detection. ACS Applied Materials and Interfaces, 2023, 15(34): 40772.
DOI URL |
[8] |
WANG J. Electrochromism research in China. Journal of Inorganic Materials, 2021, 36(5): 449.
DOI URL |
[9] |
DIAO X, LIU X, ZHONG X. Electrochromic devices based on tungsten oxide and nickel oxide: a review. Journal of Inorganic Materials, 2021, 36(2): 128.
DOI |
[10] |
LI Y, ZHAO J, CHEN X, et al. Reflective property of inorganic electrochromic materials. Journal of Inorganic Materials, 2021, 36(5): 451.
DOI |
[11] |
GUO Y, LI H, LI Y, et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Advanced Functional Materials, 2022, 32(44): 2203585.
DOI URL |
[12] |
PARK H, KIM D S, HONG S Y, et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9(22): 7631.
DOI PMID |
[13] |
MA D Y, EH A L S, CAO S, et al. Wide-spectrum modulated electrochromic smart windows based on MnO2/PB films. ACS Applied Materials and Interfaces, 2022, 14(1): 1443.
DOI URL |
[14] |
KIM J H, HONG J, HAN S H. Optimized physical properties of electrochromic smart windows to reduce cooling and heating loads of office buildings. Sustainability, 2021, 13(4): 1815.
DOI URL |
[15] |
PARK B R, HONG J, CHOI E J, et al. Improvement in energy performance of building envelope incorporating electrochromic windows (ECWs). Energies, 2019, 12(6): 1181.
DOI URL |
[16] |
YU Z D, CAI G N, LIU X L, et al. Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Analytical Chemistry, 2021, 93(5): 2916.
DOI PMID |
[17] |
BI S, JIN W, HAN X, et al. Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display. Nano Energy, 2022, 102: 107629.
DOI URL |
[18] |
ZHANG H, CHEN H, LEE J H, et al. Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Advanced Functional Materials, 2022, 32(47): 2208362.
DOI URL |
[19] |
YAN H, LIU J, ZHANG Q, et al. Dynamic process of ions transport and cyclic stability of WO3 electrochromic film. Journal of Inorganic Materials, 2021, 36(2): 152.
DOI URL |
[20] |
LIU L, WANG T, HE Z, et al. All-solid-state electrochromic Li-ion hybrid supercapacitors for intelligent and wide-temperature energy storage. Chemical Engineering Journal, 2021, 414: 128892.
DOI URL |
[21] |
GONG H, ZHOU K, ZHANG Q, et al. A self-patterning multicolor electrochromic device driven by horizontal redistribution of ions. Solar Energy Materials and Solar Cells, 2020, 215: 110642.
DOI URL |
[22] |
LIU L, DU K, HE Z, et al. High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices. Nano Energy, 2019, 62: 46.
DOI URL |
[23] |
LIU L, ZHANG Q, DU K, et al. An intelligent and portable power storage device able to visualize the energy status. Journal of Materials Chemistry A, 2019, 7(40): 23028.
DOI URL |
[24] |
LIU L, DIAO X, HE Z, et al. High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage. Energy Storage Materials, 2020, 33: 258.
DOI URL |
[25] |
LUO Z, LIU L, YANG X, et al. Revealing the charge storage mechanism of nickel oxide electrochromic supercapacitors. ACS Applied Materials and Interfaces, 2020, 12(35): 39098.
DOI URL |
[26] |
MA D, HOU L, WANG J. Molybdenum oxide electrochromic materials and devices. Journal of Inorganic Materials, 2021, 36(5): 461.
DOI |
[27] |
JIA H, CAO X, JIN P. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020, 35(5): 511.
DOI |
[28] |
WANG J, HAO X, PAN B, et al. Perovskite single-detector visible-light spectrometer. Optics Letters, 2023, 48(2): 399.
DOI PMID |
[29] |
DIAO X, WANG S, YANG J, et al. Preparation of lithium titanate thin film for electrochromic smart window by Sol-Gel spin coating method. Journal of Inorganic Materials, 2021, 36(5): 471.
DOI |
[30] |
WANG H, WU W, ZHAO Z, et al. Progress in flexible electrochromic devices. Journal of Inorganic Materials, 2021, 36(2): 140.
DOI |
[31] |
TONG Z, LIAN R, YANG R, et al. An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density. Energy Storage Materials, 2022, 44: 497.
DOI URL |
[32] |
FAN X, YANG Y, SHI X, et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Advanced Functional Materials, 2020, 30(52): 2007110.
DOI URL |
[33] |
YIN T, SUN X, LIAO Z, et al. Colorimetric and Coulometric dual-mode sensing based on electrochromic Prussian blue device for solid-contact ion-selective electrodes. Sensors and Actuators B: Chemical, 2022, 371: 132502.
DOI URL |
[34] |
LI C, XIONG J, ZHENG C, et al. Screen-printing preparation of high-performance nonenzymatic glucose sensors based on Co3O4 nanoparticles-embedded N-doped laser-induced graphene. ACS Applied Nano Materials, 2022, 5(11): 16655.
DOI URL |
[35] | LI C, JIA M, HONG Y, et al. Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces. Frontiers of Information Technology & Electronic Engineering, 2022, 23(5): 801. |
[36] | LI C, XUE Y, JIA P, et al. A wireless passive vibration sensor based on high-temperature ceramic for harsh environment. Journal of Sensors, 2021, 2021: 1. |
[37] |
LI C, XU A, FENG Q, et al. High-performance SAW device based on zinc-oxide substrate with electric field regulating graphene film conductivity for signal amplifier. IEEE Electron Device Letters, 2022, 43(11): 1977.
DOI URL |
[38] |
LIU L, ZHEN M, WANG L, et al. Full-temperature all-solid-state dendrite-free Zn-ion electrochromic energy storage devices for intelligent applications. Chemical Engineering Journal, 2023, 468: 143837.
DOI URL |
[1] | 贾汉祥, 邵泽伟, 黄爱彬, 金平实, 曹逊. 光学设计用于全固态电致变色器件的高溅射效率三明治结构电解质[J]. 无机材料学报, 2021, 36(5): 479-484. |
[2] | 钟晓岚, 刘雪晴, 刁训刚. 基于氧化钨和氧化镍的电致变色器件研究进展[J]. 无机材料学报, 2021, 36(2): 128-139. |
[3] | 方华靖, 赵泽天, 武文婷, 汪宏. 柔性电致变色器件研究进展[J]. 无机材料学报, 2021, 36(2): 140-151. |
[4] | 贾汉祥, 曹逊, 金平实. 无机全固态电致变色材料与器件研究进展[J]. 无机材料学报, 2020, 35(5): 511-524. |
[5] | 王贵欣, 裴志彬, 叶长辉. 自供能柔性氧化石墨烯湿度传感器的喷墨印刷制备及性能研究[J]. 无机材料学报, 2019, 34(1): 114-120. |
[6] | 都时禹, 张一鸣, 罗侃, 黄庆. 自然启发算法库构建设想及其在新材料研发中的意义[J]. 无机材料学报, 2019, 34(1): 27-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||