无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 274-282.DOI: 10.15541/jim20230391 CSTR: 32189.14.10.15541/jim20230391

所属专题: 【结构材料】核用陶瓷(202409)

• 研究论文 • 上一篇    下一篇

Si3N4陶瓷在高温熔盐-水氧环境下的腐蚀行为

邱子豪(), 田志林(), 郑丽雅, 李斌()   

  1. 中山大学 材料学院, 深圳 518107
  • 收稿日期:2023-08-29 修回日期:2023-11-08 出版日期:2024-03-20 网络出版日期:2023-11-10
  • 通讯作者: 田志林, 副教授. E-mail: tianzhlin@mail.sysu.edu.cn;
    李斌, 教授. E-mail: libin75@mail.sysu.edu.cn
  • 作者简介:邱子豪(2000-), 男, 硕士研究生. E-mail: qiuzh28@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金(52202078);国家自然科学基金(52202126);广东省基础与应用基础研究基金(2021A1515110293);广东省基础与应用基础研究基金(2022A1515012201);广东省基础与应用基础研究基金(2021B1515020083);国家万人计划领军人才支持经费(2022WRLJ003)

Corrosion Behavior of Si3N4 Ceramic in High-temperature Molten Salt-water Vapor Environment

QIU Zihao(), TIAN Zhilin(), ZHENG Liya, LI Bin()   

  1. School of Materials, Sun Yat-sen University, Shenzhen 518107, China
  • Received:2023-08-29 Revised:2023-11-08 Published:2024-03-20 Online:2023-11-10
  • Contact: TIAN Zhilin, associate professor. E-mail: tianzhlin@mail.sysu.edu.cn;
    LI Bin, professor. E-mail: libin75@mail.sysu.edu.cn
  • About author:QIU Zihao(2000-), male, Master candidate. E-mail: qiuzh28@mail2.sysu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52202078);National Natural Science Foundation of China(52202126);Guangdong Basic and Applied Basic Research Foundation(2021A1515110293);Guangdong Basic and Applied Basic Research Foundation(2022A1515012201);Guangdong Basic and Applied Basic Research Foundation(2021B1515020083);Leading Talent Project of the National Special Support Program(2022WRLJ003)

摘要:

熔盐电解是核能领域乏燃料干法后处理的关键技术。高温下熔盐会对盛装乏燃料的坩埚造成严重的腐蚀, 因此, 研发具有耐高温和抗腐蚀的坩埚材料是发展干法后处理技术的关键。Si3N4凭借其优异的高温热学和力学性能, 成为干法后处理工艺中坩埚的理想候选材料。然而在实际服役条件下, Si3N4面临高温熔盐和水氧的侵蚀, 其失效行为尚不明确。因此, 本工作选取Si3N4为研究对象, 在氩气和水氧(5%H2O-10%O2-85%Ar)环境中, 开展了LiCl-KCl和NaCl-2CsCl熔盐对Si3N4的腐蚀行为研究。研究发现, 在氩气环境中, Si3N4在LiCl-KCl熔盐中出现轻微的晶界腐蚀, 而NaCl-2CsCl熔盐对其腐蚀并不明显。在5%H2O-10%O2-85%Ar水氧耦合环境中, LiCl-KCl熔盐优先腐蚀Si3N4中的晶界相, 而NaCl-2CsCl熔盐的腐蚀比氩气环境更为严重。高温水氧环境显著加剧了熔盐对Si3N4陶瓷的腐蚀程度, 同时晶界相成为Si3N4最易受到腐蚀的部位。此外, LiCl-KCl和NaCl-2CsCl熔盐在Si3N4表面的润湿性与抗腐蚀性之间并无直接关联。上述研究结果揭示了Si3N4在高温熔盐-水氧环境下的腐蚀机制, 为乏燃料干法后处理工艺中关键材料的选择提供了参考。

关键词: Si3N4, 晶界相, 熔盐, 水氧, 干法后处理

Abstract:

Molten salt electrolysis is the key technology for dry reprocessing of spent fuel in the nuclear energy industry. High-temperature molten salt can cause severe corrosion to crucible materials used for spent fuel, so the selection of the crucible material with good resistance to high temperature and corrosion is crucial for the development of the dry reprocessing method. Si3N4 is considered as a promising candidate for the crucible used in dry reprocessing, primarily due to its excellent high-temperature thermal and mechanical properties. However, its resistance to high-temperature molten salts and water vapor has not been fully investigated. In this work, the corrosion behavior of Si3N4 in LiCl-KCl and NaCl-2CsCl molten salt under Ar atmosphere and water vapor (5%H2O-10%O2-85%Ar) was investigated. The results show that in argon atmosphere, Si3N4 undergoes slight grain boundary corrosion in LiCl-KCl molten salt, while NaCl-2CsCl molten salt presents weak corrosion on Si3N4. In 5%H2O-10%O2-85%Ar water vapor environment, LiCl-KCl molten salt prefers to attack the grain boundary phase. Si3N4 shows serious corrosion degradation in the NaCl-2CsCl molten salt compared with the corrosion level in argon atmosphere. The water vapor environment significantly promotes the corrosion of Si3N4 in the molten salt environment, while the grain boundary phase is the most susceptible site for the corrosion of Si3N4. In addition, no direct correlation is found between the wettability and corrosion resistance of LiCl-KCl and NaCl-2CsCl molten salts. Results of this work elucidate the mechanism of high-temperature molten salt-water vapor-induced degradation of Si3N4, offering guidelines for the selection of crucibles in the dry reprocessing of spent fuel.

Key words: Si3N4, grain boundary phase, molten salt, water vapor, dry reprocessing

中图分类号: