无机材料学报 ›› 2023, Vol. 38 ›› Issue (6): 701-707.DOI: 10.15541/jim20220478 CSTR: 32189.14.10.15541/jim20220478
所属专题: 【能源环境】光催化(202312); 【能源环境】氢能材料(202409)
吐尔洪·木尼热1(), 赵红刚1,2(
), 马玉花1,2(
), 齐献慧1, 李钰宸1, 闫沉香1, 李佳文1, 陈平1
收稿日期:
2022-08-11
修回日期:
2022-10-17
出版日期:
2022-11-16
网络出版日期:
2022-11-16
通讯作者:
赵红刚, 讲师. E-mail: 262385441@qq.com;
TUERHONG Munire1(), ZHAO Honggang1,2(
), MA Yuhua1,2(
), QI Xianhui1, LI Yuchen1, YAN Chenxiang1, LI Jiawen1, CHEN Ping1
Received:
2022-08-11
Revised:
2022-10-17
Published:
2022-11-16
Online:
2022-11-16
Contact:
ZHAO Honggang, lecturer. E-mail: 262385441@qq.com;Supported by:
摘要:
S型异质结被广泛应用于光解水产氢和解决环境污染问题。本研究通过简单的水热法制备了单晶WO3/水热处理后的红磷(HRP)复合材料。XPS和EPR等表征结果证实单晶WO3/HRP复合材料形成了S型异质结。5%WO3/HRP异质结复合物在可见光下展现出最佳的光催化活性, 在4 min内对罗丹明B(RhB)的降解率高达97.6%。此外, 制氢速率可以达到870.69 μmol·h-1·g-1, 是纯HRP的3.62倍。这可归功于单晶WO3和HRP之间形成紧密的S型异质结, 使其光生载流子快速分离并提高氧化还原能力。本研究制备的RP基光催化剂为解决日益增长的清洁新能源和饮用水需求提供了参考。
中图分类号:
吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707.
TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction[J]. Journal of Inorganic Materials, 2023, 38(6): 701-707.
Fig. 5 (a) UV-Vis DRS spectra of HRP, WO3 and 5%WO3/HRP composite, (b) Tauc plots of HRP and WO3, and (c) I-t curves of HRP, WO3 and 5%WO3/HRP composite
Fig. 6 (a) EIS spectra of HRP, WO3 and 5%WO3/HRP composite, (b) Mott-Schottky curves of HRP and WO3, and (c) EPR spectra of HRP, WO3 and 5%WO3/HRP composite
Fig. 7 Photocatalytic mechanism of the WO3/HRP composite (a) Before contact; (b) After contact in darkness; (c) S-scheme transfer process of photogenerated carriers under visible light irradiation
Fig. S2 SEM images of (a, d) HRP, (b, e) WO3, (c, f) 5%WO3/HRP composite, and (g) corresponding elemental mapping of P, O and W, and (h) EDS spectra of 5%WO3/HRP composite
Fig. S3 (a) XPS survey spectra of HRP, WO3, 5%WO3/HRP composite, (b) cycling performance of RhB photodegradation by 5%WO3/HRP composite and (c) PL spectra of HRP, WO3, 5%WO3/HRP composite
[1] |
TAO J, ZHANG M, GAO X, et al. Photocatalyst Co3O4/red phosphorus for efficient degradation of malachite green under visible light irradiation. Materials Chemistry and Physics, 2020, 240: 122185.
DOI URL |
[2] |
LIU E, QI L, CHEN J, et al. In situ fabrication of a 2D Ni2P/red phosphorus heterojunction for efficient photocatalytic H2 evolution. Materials Research Bulletin, 2019, 115: 27.
DOI URL |
[3] |
LIANG Z, DONG X, HAN Y, et al. In-situ growth of 0D/2D Ni2P quantum dots/red phosphorus nanosheets with p-n heterojunction for efficient photocatalytic H2 evolution under visible light. Applied Surface Science, 2019, 484: 293.
DOI URL |
[4] |
WU C, JING L, DENG J, et al. Elemental red phosphorus-based photocatalysts for environmental remediation: a review. Chemosphere, 2021, 274: 129793.
DOI URL |
[5] |
WANG Z, BAI Y, LI Y, et al. Bi2O2CO3/red phosphorus S-scheme heterojunction for H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2022, 609: 320.
DOI URL |
[6] |
ZHU Y, LI J, DONG C, et al. Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Applied Catalysis B: Environmental, 2019, 255: 117764.
DOI URL |
[7] |
AIHEMAITI X, WANG X, LI Y, et al. Enhanced photocatalytic and antibacterial activities of S-scheme SnO2/Red phosphorus photocatalyst under visible light. Chemosphere, 2022, 296: 134013.
DOI URL |
[8] |
ZHU E, MA Y, DU H, et al. Three-dimensional bismuth oxide/red phosphorus heterojunction composite with enhanced photoreduction activity. Applied Surface Science, 2020, 528: 146932.
DOI URL |
[9] |
WANG Z, BAI Y, LI Y, et al. Bi2O2CO3/red phosphorus S-scheme heterojunction for H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2022, 609: 320.
DOI URL |
[10] |
WANG W, LI G, AN T, et al. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral- responsive photocatalyst: the role of type I band alignment. Applied Catalysis B: Environmental, 2018, 238: 126.
DOI URL |
[11] |
ZHU E, ZHAO S, DU H, et al. Construction of Bi2Fe4O9/red phosphorus heterojunction for rapid and efficient photo-reduction of Cr(VI). Journal of the American Ceramic Society, 2021, 104: 5411.
DOI URL |
[12] |
ZHOU L, LI Y, YANG S, et al. Preparation of novel 0D/2D Ag2WO4/WO3step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chemical Engineering Journal, 2021, 420: 130361.
DOI URL |
[13] | ZHANG J, LIU Z, LIU Z. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2016, 8(15):9684. |
[14] |
LING Y, DAI Y. Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light. Applied Surface Science, 2020, 509: 145201.
DOI URL |
[15] |
SONG C, WANG X, ZHANG J, et al. Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light. Applied Surface Science, 2017, 425: 788.
DOI URL |
[16] |
JIANG S, CAO J, GUO M, et al. Novel S-scheme WO3/RP composite with outstanding overall water splitting activity for H2 and O2 evolution under visible light. Applied Surface Science, 2021, 558: 149882.
DOI URL |
[17] |
TUERHONG M, CHEN P, MA Y, et al. Bi2MoO6/red phosphorus heterojunction for reducing Cr(VI) and mitigating Escherichia coli infection. Journal of Solid State Chemistry, 2022, 315: 123468.
DOI URL |
[18] |
PAN T, CHEN D, XU W, et al. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. Journal of Hazardous Materials, 2020, 393: 122366.
DOI URL |
[19] |
ZHANG N, LI X, YE H, et al. Oxide defect engineering enables to couple solar energy into oxygen activation. Journal of the American Chemical Society, 2016, 138(28):8928.
DOI PMID |
[20] |
XIAO T, TANG Z, YANG Y, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Applied Catalysis B: Environmental, 2018, 220: 417.
DOI URL |
[21] |
GUO C, DU H, MA Y, et al. Visible-light photocatalytic activity enhancement of red phosphorus dispersed on the exfoliated kaolin for pollutant degradation and hydrogen evolution. Journal of Colloid and Interface Science, 2020, 585: 167.
DOI URL |
[22] |
ZHOU J, AN X, TANG Q, et al. Dual channel construction of WO3photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A. Applied Catalysis B: Environmental, 2020, 277: 119221.
DOI URL |
[23] |
FENG C, TANG L, DENG Y, et al. Synthesis of branched WO3@W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance. Chemical Engineering Journal, 2020, 389: 124474.
DOI URL |
[24] |
ZHANG K, JIN B, PARK C, et al. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019, 10(1): 2001.
DOI PMID |
[25] |
ZOU X, DONG Y, KE J, et al. Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible- light-driven gaseous toluene degradation. Chemical Engineering Journal, 2020, 400: 125919.
DOI URL |
[26] |
YUE X, YI S, WANG R, et al. Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy, 2018, 47: 463.
DOI URL |
[27] |
AIHEMAITI X, WANG X, WANG Z, et al. Effective prevention of charge trapping in red phosphorus with nanosized CdS modification for superior photocatalysis. Journal of Environmental Chemical Engineering, 2021, 9(6):106479.
DOI URL |
[28] |
DONG C, YANG Y, HU X, et al. Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%. Nature Communications, 2022, 13(1):4982.
DOI |
[29] |
GE H, XU F, CHENG B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem, 2019, 11(24):6301.
DOI URL |
[30] |
LIU Y, PAN D, XIONG M, et al. In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants. Chinese Journal of Catalysis, 2020, 41(10):1554.
DOI URL |
[31] |
JIA Y, WANG Z, QIAO X, et al. A synergistic effect between S-scheme heterojunction and Noble-metal free cocatalyst to promote the hydrogen evolution of ZnO/CdS/MoS2photocatalyst. Chemical Engineering Journal, 2021, 424: 130368.
DOI URL |
[32] |
FU J, XU Q, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019, 243: 556.
DOI URL |
[1] | 陈长, 赵若伊, 韩少杰, 王焕燃, 杨群, 高彦峰. 纳米晶液相镀膜制备WO3电致变色薄膜研究和性能优化[J]. 无机材料学报, 2023, 38(11): 1355-1363. |
[2] | 马润东, 郭雄, 施凯旋, 安胜利, 王瑞芬, 郭瑞华. MoS2/g-C3N4 S型异质结的构建及光催化性能研究[J]. 无机材料学报, 2023, 38(10): 1176-1182. |
[3] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[4] | 熊金艳, 罗强, 赵凯, 张梦梦, 韩朝, 程刚. 界面电荷快速转移提升铜修饰氧化钨光催化性能[J]. 无机材料学报, 2021, 36(3): 325-331. |
[5] | 周开岭, 汪浩, 张倩倩, 刘晶冰, 严辉. WO3电致变色薄膜离子传输动力过程及其循环稳定性[J]. 无机材料学报, 2021, 36(2): 152-160. |
[6] | 朱恩权,马玉花,艾尼瓦·木尼热,粟智. 膨润土负载红磷复合材料的吸附富集-定位光降解性能[J]. 无机材料学报, 2020, 35(7): 803-808. |
[7] | 季邦, 赵文锋, 段洁利, 马立哲, 付兰慧, 杨洲. 泡沫镍网负载TiO2/WO3薄膜对乙烯的光催化降解[J]. 无机材料学报, 2020, 35(5): 581-588. |
[8] | 田丽媛, 姚志恒, 李 凤, 王永龙, 叶世海. 红磷/碳复合材料的制备及电化学性能研究[J]. 无机材料学报, 2015, 30(6): 653-661. |
[9] | 孟姝虔, 周德凤, 朱晓飞, 杨国程, 李朝辉. TiO2/WO3微纳米纤维复合材料的制备及光催化性能[J]. 无机材料学报, 2014, 29(6): 605-613. |
[10] | 郭富荣, 田建华, 胡 敏, 单忠强. 氧还原电催化剂Pt/WO3-C的制备及稳定性研究[J]. 无机材料学报, 2013, 28(10): 1121-1126. |
[11] | 李文章, 李 洁, 王 旋, 肖 娟, 陈启元. 立方相WO3薄膜的制备及表征[J]. 无机材料学报, 2010, 25(12): 1318-1324. |
[12] | 曹铃林,袁 坚,陈铭夏,上官文峰. 热处理温度对TiO2-WO3复合光催化材料储能特性的影响[J]. 无机材料学报, 2009, 24(3): 448-452. |
[13] | 李玲,潘庆谊,程知萱,董晓雯,陈海华. CNT-WO3元件的氨敏性能研究[J]. 无机材料学报, 2006, 21(1): 151-156. |
[14] | 王忠春,胡行方. WO3薄膜的动态电变色特性[J]. 无机材料学报, 1998, 13(6): 932-936. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||