无机材料学报 ›› 2023, Vol. 38 ›› Issue (1): 55-61.DOI: 10.15541/jim20220119 CSTR: 32189.14.10.15541/jim20220119
所属专题: 【生物材料】肿瘤治疗(202409)
• 专栏:抗疫生物材料(特邀编辑: 杨勇) • 上一篇 下一篇
杜邱静1,2(), 刘天智1, 陈菊锋1,2, 陈航榕1(
)
收稿日期:
2022-03-03
修回日期:
2022-03-31
出版日期:
2023-01-20
网络出版日期:
2022-05-07
通讯作者:
陈航榕, 研究员. E-mail: hrchen@mail.sic.ac.cn作者简介:
杜邱静(1997-), 女, 硕士研究生. E-mail: duqiujing19@mails.ucas.ac.cn
DU Qiujing1,2(), LIU Tianzhi1, CHEN Jufeng1,2, CHEN Hangrong1(
)
Received:
2022-03-03
Revised:
2022-03-31
Published:
2023-01-20
Online:
2022-05-07
Contact:
CHEN Hangrong, professor. E-mail: hrchen@mail.sic.ac.cnAbout author:
DU Qiujing (1997-), female, Master candidate. E-mail: duqiujing19@mails.ucas.ac.cn
Supported by:
摘要:
次氯酸(HClO)是一种活性氧(ROS), 在许多生理和病理过程中起着至关重要的作用。然而, 过量的HClO会导致组织损伤、动脉粥样硬化、神经退行性疾病甚至癌症。因此, 实时检测肿瘤细胞中HClO对于探索HClO在肿瘤进展以及免疫治疗中的作用具有重要意义。与目前常用的工艺复杂、水溶性差的有机分子探针不同, 本工作简单地将异硫氰酸荧光素(FITC)与中空介孔普鲁士蓝纳米粒子(HMPB)相结合, 构建了一种新型的无机亲水荧光纳米探针。由于内滤光效应, HMPB中FITC的荧光有一定程度的猝灭, 但通过Fe2+-ClO-氧化还原反应可恢复荧光。 体外条件下, 加入HClO后, FITC在发射峰(520 nm)处荧光逐渐增强, HClO在5×10-6-50×10-6 mol/L范围内呈良好的线性关系, 检出限为2.01×10-6 mol/L。此外, 在细胞水平上, 该纳米探针对癌细胞中的HClO显示出良好的特异检测能力, 且灵敏度高。
中图分类号:
杜邱静, 刘天智, 陈菊锋, 陈航榕. 普鲁士蓝基HClO荧光纳米探针及其对肿瘤细胞的特异性检测[J]. 无机材料学报, 2023, 38(1): 55-61.
DU Qiujing, LIU Tianzhi, CHEN Jufeng, CHEN Hangrong. Construction of Prussian Blue Fluorescent Nanoprobe for Specific Detection of HClO in Cancer Cells[J]. Journal of Inorganic Materials, 2023, 38(1): 55-61.
Fig. 2 Characterization of the prepared HMPB and F@H (a) Typical TEM image, (b) XRD pattern, and (c) pore-size distribution curve of HMPB with inset showing N2 adsorption-desorption isotherm; (d) UV-Vis spectra of FITC, HMPB and F@H; (e) Fluorescence spectra of free FITC and F@H with inset showing corresponding fluorescence intensity ratio at 520 nm; (f) Fluorescence life of FITC and F@H
Encapsulation Efficiency | 83.9% |
---|---|
Loading Efficiency | 14.4% |
Table S1 Calculated encapsulation efficiency and loading efficiency by the standard curve and UV-Vis spectrum of F@H supernatant
Encapsulation Efficiency | 83.9% |
---|---|
Loading Efficiency | 14.4% |
Fig. 3 In vitro detection of HClO and mechanism (a, b) Fluorescence (FL) spectra (a) and the corresponding calibration curve (b) of F@H (50 μg/mL) with the addition of NaClO (0-50 μmol/L) in Tris-HCl (10 mmol/L, pH 5.5). λex=488 nm, λem=520 nm; (c) Absorbance of F@H varied with time before and after addition of NaClO; (d) XPS profiles of F@H without/with addition of NaClO
Fig. S3 Time-dependent fluorescence intensity of F@H (50 μg/mL) upon the addition of 50 μmol/L NaClO in Tris-HCl buffer (10 mmol/L, pH=5.5). λex = 488 nm, λem = 520 nm.
Fig. 4 Fluorescence of F@H in the presence of other ROS (a) Fluorescence spectra (inset of (a)) and the corresponding fluorescence (FL) intensity (a) of F@H (50 μg/mL) with the addition of different interfering substances (500 μmol/L, 1-blank, 2-TBHP, 3-ROO, 4-NO, 5-H2O2, 6- · ·OH, 7-ONOO-, 8-ClO-) in Tris-HCl (10 mmol/L, pH 5.5) λex=488 nm, λem=520 nm; (b) Absorbance change of F@H with addition of different interfering substances (500 μmol/L) Colorful figures are available on website
Fig. S4 Cytotoxicity of F@H on 4T1 cells. Cells were incubated with 0-100 μmol/L F@H in DMEM medium containing 10% fetal bovine serum (FBS) for 24 h. ppm: μg/mL
Fig. 5 Detecting HClO in living cancer cells (a-d) Confocal fluorescence and (e-h) bright field images for detecting exogenous or endogenous HClO in 4T1 cells Blank: without any treatments; Control: 50 μg/mL of F@H and 0 μmol/L NaClO; NaClO: 50 μg/mL of F@H and 100 μmol/L NaClO; Elesclomol: 50 μg/mL of F@H and 50 μmol/L elesclomol. λex=488 nm, λem=520 nm; (i) Statistical analyses of the confocal images
[1] |
DICKINSON B, CHANG C. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chemical Biology, 2011, 7(8): 504.
DOI PMID |
[2] |
CHEN X, WANG F, HYUN J, et al. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 2016, 45(10): 2976.
DOI PMID |
[3] |
CHEN X, TIAN X, SHIN I, et al. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 2011, 40(9): 4783.
DOI PMID |
[4] |
LOU Z, LI P, HAN K. Redox-responsive fluorescent probes with different design strategies. Accounts of Chemical Research, 2015, 48(5): 1358.
DOI URL |
[5] |
LIPPERT A R, BITTNER G, CHANG C. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Accounts of Chemical Research, 2011, 44(9): 793.
DOI PMID |
[6] |
SCHUMACKER P T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell, 2006, 10(3): 175.
DOI PMID |
[7] |
TOYOKUNI S, OKAMOTO K, YODOI J, et al. Persistent oxidative stress in cancer. FEBS Letters, 1995, 358(1): 1.
DOI PMID |
[8] |
HILEMAN E, LIU J, ALBITAR M, et al. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemotherapy and Pharmacology, 2004, 53(3): 209.
DOI PMID |
[9] |
BEHREND L, HENDERSON G, ZWACKA R. Reactive oxygen species in oncogenic transformation. Biochemical Society Transactions, 2003, 31(6): 1441.
DOI PMID |
[10] |
KONG Q, LILLEHEI K. Antioxidant inhibitors for cancer therapy. Medical Hypotheses, 1998, 51(5): 405.
DOI PMID |
[11] |
KONG Q, BEEL J, LILLEHEI K. A threshold concept for cancer therapy. Medical Hypotheses, 2000, 55(1): 29.
PMID |
[12] |
KLEBANOFF S. Myeloperoxidase: friend and foe. Journal of Leukocyte Biology, 2005, 77(5): 598.
DOI PMID |
[13] |
SCHREIBER R, OLD L, SMYTH M. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 2011, 331(6024): 1565.
DOI URL |
[14] |
PAGGIO J. Cancer immunotherapy and the value of cure. Nature Reviews Clinical Oncology, 2018, 15(5): 268.
DOI URL |
[15] | GAO W, MA Y, LIU Y, et al. Observation of endogenous HClO in living mice with inflammation, tissue injury and bacterial infection by a near-infrared fluorescent probe. Sensors and Actuators B: Chemical, 2021, 327: 128884. |
[16] |
MA H, CHEN K, SONG B, et al. A visible-light-excitable mitochondria-targeted europium complex probe for hypochlorous acid and its application to time-gated luminescence bioimaging. Biosensors and Bioelectronics, 2020, 168: 112560.
DOI URL |
[17] |
LUO P, ZHAO X. A sensitive and selective fluorescent probe for real-time detection and imaging of hypochlorous acid in living cells. ACS Omega, 2021, 6(18): 12287.
DOI PMID |
[18] |
MA Q, WANG C, BAI Y, et al. A lysosome-targetable and ratiometric fluorescent probe for hypochlorous acid in living cells based on a 1, 8-naphthalimide derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117334.
DOI URL |
[19] |
YU F, DU T, WANG Y, et al. Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. Sensors and Actuators B: Chemical, 2022, 353: 131032.
DOI URL |
[20] |
FAUSTINOA P, YANG S, PROGAR J, et al. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian Blue. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47(1): 114.
DOI PMID |
[21] | YOU Y, WU X, YIN Y, et al. High-quality Prussian Blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy & Environmental Science, 2014, 7(5): 1643. |
[22] | HOU L, GONG X, YANG J, et al. Hybrid-membrane-decorated Prussian Blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Advanced Materials, 2022, 34(14): 2200389. |
[23] |
RICCI F, MOSCONE D, TUTA C, et al. Novel planar glucose biosensors for continuous monitoring use. Biosensors and Bioelectronics, 2005, 20(10): 1993.
PMID |
[24] |
PAZ E, BARFIDOKHT A, RIOS S, et al. Extended noninvasive glucose monitoring in the interstitial fluid using an epidermal biosensing patch. Analytical Chemistry, 2021, 93(37): 12767.
DOI PMID |
[25] | SEMPIONATTO J, MOON J, WANG J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sensor, 2021, 6(5): 1875. |
[26] |
KARPOVA E, SHCHERBACHEVA E, GALUSHIN A, et al. Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Analytical Chemistry, 2019, 91(6): 3778.
DOI PMID |
[27] |
ZHAI Y, ZHANG H, ZHANG L, et al. A high performance fluorescence switching system triggered electrochemically by Prussian Blue with upconversion nanoparticles. Nanoscale, 2016, 8(18): 9493.
DOI PMID |
[28] |
XU C, ZHOU Y, ZHOU Y, et al. A facile ratiometric sensing platform based on inner filter effect for hypochlorous acid detection. Sensors and Actuators B: Chemical, 2020, 325: 128766.
DOI URL |
[29] |
HAN L, LIU S, LIANG J, et al. pH-mediated reversible fluorescence nanoswitch based on inner filter effect induced fluorescence quenching for selective and visual detection of 4-nitrophenol. Journal of Hazardous Materials, 2019, 362: 45.
DOI PMID |
[30] |
ZHANG Q, SUN Y, LIU M, et al. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale, 2020, 12(3): 1826.
DOI URL |
[31] |
YAN F, ZU F, XU J, et al. Fluorescent carbon dots for ratiometric detection of curcumin and ferric ion based on inner filter effect, cell imaging and PVDF membrane fouling research of iron flocculants in wastewater treatment. Sensors and Actuators B: Chemical, 2019, 287: 231.
DOI URL |
[32] |
LIU H, XU C, BAI Y, et al. Interaction between fluorescein isothiocyanate and carbon dots: inner filter effect and fluorescence resonance energy transfer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171: 311,
DOI URL |
[33] |
CAI X, GAO W, MA M, et al. A Prussian Blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity. Advanced Materials, 2015, 27(41): 6382.
DOI |
[34] |
KIRSHNER J, HE S, BALASUBRAMANYAM V, et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Molecular Cancer Therapeutics, 2008, 7(8): 2319.
DOI PMID |
[1] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
[2] | 王琨鹏, 刘兆林, 林存生, 王治宇. 基于低含水量普鲁士蓝正极的准固态钠离子电池[J]. 无机材料学报, 2024, 39(9): 1005-1012. |
[3] | 于业帆, 徐玲, 倪忠斌, 施冬健, 陈明清. 普鲁士蓝/生物炭材料的制备及其氨氮吸附机理[J]. 无机材料学报, 2023, 38(2): 205-212. |
[4] | 张家强, 邹馨蕾, 王能泽, 贾春阳. 两步电沉积法制备Zn-Fe PBA薄膜及其在电致变色器件中的性能研究[J]. 无机材料学报, 2022, 37(9): 961-968. |
[5] | 李勇, 何玮鑫, 郑芯月, 于胜兰, 李海同, 黎弘毅, 张蓉, 王雨. 水系钠离子电池普鲁士蓝正极材料的制备与电化学性能研究[J]. 无机材料学报, 2019, 34(4): 365-372. |
[6] | 郑爱芳,陈金龙. CdTe纳米棒的水相合成与铜离子识别研究[J]. 无机材料学报, 2009, 24(2): 251-254. |
[7] | 孟庆国,张洪杰,符连社,杨魁跃. Eu3+离子作为荧光探针研究TiO2凝胶的结构变化[J]. 无机材料学报, 1999, 14(4): 630-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||