[1] |
LAMY C, JAUBERT T, BARANTON S , et al. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): effect of the nature and structure of the catalytic anode. J. Power Sources , 2014,245(1):927-936.
DOI
URL
|
[2] |
WANG J, XU F, JIN H , , et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater.. 2017, 29(14): 1605838-1-35.
DOI
URL
PMID
|
[3] |
GREELEY J, JARAMILLO T F, BONDE J , et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. , 2006,5(11):909-913.
DOI
URL
PMID
|
[4] |
LI D, BAYDOUN H, VERANI C N , et al. Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc., 2016,138(12):4006-4009.
DOI
URL
PMID
|
[5] |
MA T, DAI S, JARONIEC M , et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc, 2014,136(39):13925-13931.
DOI
URL
|
[6] |
CHEN Y X, LAVACCHI A, MILLER H A , , et al. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun.. 2014, 5(6): 4036-1-7.
DOI
URL
|
[7] |
CHEN S, DUAN J, VASILEFF A , et al. Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. Int. Ed., 2016,55(11):3804-3808.
DOI
URL
|
[8] |
GWAK J, CHOUN M, LEE J . Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production. ChemSusChem, 2016,9(4):403-408.
DOI
URL
PMID
|
[9] |
BAMBAGIONI V, BEVILACQUA M, BIANCHINI C , et al. Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. ChemSusChem, 2010,3(7):851-855.
DOI
URL
PMID
|
[10] |
SRIVASTAVA M, DAS A K, KHANRA P , et al. Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. J. Mater. Chem. A, 2013,1(34):9792-9801.
DOI
URL
|
[11] |
WANG H, MA Y, WANG R , et al. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chem. Commun , 2015,51(17):3570-3573.
DOI
URL
|
[12] |
GAO W, LI C M, CHEN H , et al. Supported nickel-iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O. Green Chem., 2014,16(3):1560-1568.
DOI
URL
|
[13] |
WEN X P, DAI H B, WU L S , et al. Electroless plating of Ni-B film as a binder-free highly efficient electrocatalyst for hydrazine oxidatio. Appl. Surf. Sci , 2017,409:132-139.
DOI
URL
|
[14] |
JAKŠIĆ M M . Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochim. Acta, 1984,29(11):1539-1550.
DOI
URL
|
[15] |
WANG K C, XIA M, XIA T , et al. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction. Mat. Chem. Phys , 2017,186(1):61-66.
DOI
URL
|
[16] |
YU L P, LEI T, NAN B , et al. Characteristics of a sintered porous NiCu alloy cathode for hydrogen production in a potassium hydroxide solution. Energy, 2016,97:498-505.
DOI
URL
|
[17] |
陈益宾, 张细华 . 水热法合成纳米Ni(OH)2. 化学工程与装备, 2012(10):22-24.
|
[18] |
方超, 庞驰, 赵文英 . Mn-Ni-Al-Cu系热敏陶瓷粉末的水热法处理及其对电性能的影响. 中国陶瓷, 2019,55(2):39-43.
|
[19] |
LIU T, LIU D, QU F , , et al. Enhanced electrocatalysis for energy- efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater., 2017, 7: 1700020- 1-8.
DOI
URL
PMID
|
[20] |
WANG X L, ZHENG Y X, JIA M L , et al. Formation of nanoporous NiCuP amorphous alloy electrode by potentiostatic etching and its application for hydrazine oxidation. Int. J. Hydrogen Energy , 2016,41(20):8449-8458.
DOI
URL
|
[21] |
ASNAVANDI M, SURYANTO B H R, YANG W F, et al. Dynamic hydrogen bubble templated NiCu phosphide electrodes for pH- insensitive hydrogen evolution reactions. ACS Sustainable Chem. Eng. , 2018,6(3):2866-2871.
DOI
URL
|
[22] |
SUN Q Q, DONG Y J, WANG Z L , et al. Synergistic nanotubular copper-doped nickel catalysts for hydrogen evolution reactions. Small, 2018, 14(14): 1704137-1-9.
DOI
URL
|
[23] |
LIU M, ZHANG R, ZHANG L , et al. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorg. Chem. Front., 2017,4:420-423.
DOI
URL
|
[24] |
TANG C, ZHANG R, LU W B , et al. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non- noble-metal electrocatalyst. Angew. Chem. Int. Ed., 2017,129(3):860-864.
DOI
URL
|
[25] |
SHEN Y Q, DASTAFKAN K, SUN Q Q , et al. Improved electrochemical performance of nickelcobalt hydroxides by electrodeposition of interlayered reduced graphene oxide. Int. Energy. J. Hydrogen , 2019,44(7):3658-3667.
DOI
URL
|
[26] |
GAO M R, LIANG J X, ZHENG Y R , , et al. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun., 2015, 6: 5982-1-7.
DOI
URL
PMID
|
[27] |
SUN Q Q, ZHOU M, WANG L Y , et al. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. J. Catal. , 2019,373:180-189.
DOI
URL
|
[28] |
WANG L Y, LI Y B, SUN Q Q , et al. Ultralow Fe(III) ion doping triggered generation of Ni3S2 ultrathin nanosheet for enhanced oxygen evolution reaction. ChemCatChem, 2019,11:2011-2016.
DOI
URL
|
[29] |
SUN Y F, GAO S, LEI F C , et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev., 2015,44(3):623-636.
DOI
URL
PMID
|
|
YUE X Z, YI S S, WANG R W , et al. A novel and highly efficient earth-abundant Cu3P with TiO2 “P-N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale, 2016,8(40):17516-17523.
DOI
URL
PMID
|