| [1] | PARK B, KANG B, BU S, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682-684. | 
																													
																						| [2] | YAN H, ZHANG H, UBIC R, et al. A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9. Advanced Materials, 2005, 17(10): 1261-1265. | 
																													
																						| [3] | GHOSEZ P, TRISCONE J M. Multiferroics: coupling of three lattice instabilities. Nature Materials, 2011, 10(4): 269-270. | 
																													
																						| [4] | TINTE S, STACHIOTTI M. Multiferroic behavior of Aurivillius Bi4Mn3O12 from first principles. Physical Review B, 2012, 85(22): 224112-1-6. | 
																													
																						| [5] | CHOI W S, CHISHOLM M F, SINGH D J, et al. Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nature Communications, 2012, 3: 689. | 
																													
																						| [6] | YANG S, SEIDEL J, BYRNES S, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotechnology, 2010, 5(2): 143-147. | 
																													
																						| [7] | MURAMATSU K, SHIMAZU M, TANAKA J, et al. High n-value phases in the complex bismuth oxides with layered structure, Bi2CaNan-2NbnO3n+ 3. Journal of Solid State Chemistry, 1981, 36(2): 179-182. | 
																													
																						| [8] | ZHANG S T, CHEN Y F, SUN H P, et al. Structural and electrical properties of c-axis epitaxial homologous Srm-3Bi4TimO3m+3 (m=3, 4, 5, and 6) thin films. Journal of Applied Physics, 2003, 94(1): 544-550. | 
																													
																						| [9] | ZURBUCHEN M A, SHERMAN V O, TAGANTSEV A K, et al. Synthesis, structure, and electrical behavior of Sr4Bi4Ti7O24. Journal of Applied Physics, 2010, 107(2): 024106. | 
																													
																						| [10] | ZURBUCHEN M A, PODRAZA N J, SCHUBERT J, et al. Synthesis of the superlattice complex oxide Sr5Bi4Ti8O27 and its band gap behavior. Applied Physics Letters, 2012, 100(22): 223109. | 
																													
																						| [11] | ZHANG W, SMITH J, WANG X G. Thermodynamics from ab initio computations. Physical Review B, 2004, 70(2): 024103. | 
																													
																						| [12] | LIANG Y, YUAN X, ZHANG W. Thermodynamic identification of tungsten borides. Physical Review B, 2011, 83(22): 220102. | 
																													
																						| [13] | XI L, YANG J, LU C, et al. Systematic study of the multiple- element filling in caged skutterudite CoSb3. Chemistry of Materials, 2010, 22(7): 2384-2394. | 
																													
																						| [14] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865-3868. | 
																													
																						| [15] | MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188-5192. | 
																													
																						| [16] | HOU R Z, CHEN X M. Synthesis and dielectric properties of layer- structured compounds An-3Bi4TinO3n+3 (A = Ba, Sr, Ca) with n>4. Journal of Materials Research, 2005, 20(9): 2354-2359. | 
																													
																						| [17] | VAN DE WALLE A, CEDER G. The effect of lattice vibrations on substitutional alloy thermodynamics. reviews of modern physics, 2002, 74(1): 11-45. |