[1] Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652-657.
[2] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chemistry of Material, 2010, 22(3): 587-603.
[3] Suo L M, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications, 2013, 4: 1481.
[4] Jian Z L, Zhao L, Pan H L, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012, 14(1): 86-89.
[5] Zhao L, Pan H L, Hu Y S, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chinese Physics B, 2012, 21(2): 028201.
[6] Zhao L, Zhao J M, Hu Y S, et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Advanced Energy Materials, 2012, 2(8): 962-965.
[7] Jian Z L, Han W Z, Lu X, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Advanced Energy Materials, 2013, 3(2): 156-160.
[8] Sun Y, Zhao L, Pan H L, et al. Direct atomic-scale confirmation of three-Phase storage mechanism in Li4Ti5O12 anode for room-temperature sodium-ion batteries. Nature Communications, 2013, 4: 1870.
[9] Pan H L, Lu X, Yu X Q, et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Advanced Energy Materials, doi: 10.1002/aenm.201300139.
[10] Vetter J, Novak P, Wagner M R, et al. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1/2): 269-281.
[11] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
[12] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Materials, 2011, 10(9): 682-686.
[13] Oudenhoven J F M, Baggetto L, Notten P H L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Advanced Energy Materials, 2011, 1(1): 10-33.
[14] Hayashi A, Noi K, Sakuda A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Communications, 2012, 3: 856.
[15] Goodenough J B, Hong H Y-P, Kafalas J A. Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976, 11(2): 203-220.
[16] Hong H Y-P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12. Materials Research Bulletin, 1976, 11(2): 173-182.
[17] Virkar A V, Miller G R, Gordon R S. Resistivity microstructure relations in lithia-stabilized polycrystalline beta''-alumina. Journal of the American Ceramic Society, 1978, 61(5/6): 250-252.
[18] Youngblood G E, Miller G R, Gordon R S. Relative effects of phase conversion and grain-size on sodium ion conduction in polycrystalline, lithia-stabilized beta''-alumina. Journal of the American Ceramic Society, 1978, 61(1/2): 86-87.
[19] Lin Z X, Tian S B. Phase relationship and electrical conductivity of Na3Zr2-xYbxSi2-xP1+xO12 system. Solid State Ionics, 1983, 9-10(2): 809-811.
[20] Wang W J, Li D Y, Zhao J Z. Solid phase synthesis and characterization of Na3Zr2-yNb0.8ySi2PO12 system. Solid State Ionics, 1992, 51(1/2): 97-100.
[21] Wang W J, Wang S B, Lin R, et al. Study of Na1+x+yZr2-yNdySixP3-xO12 fastion conductors. Solid State Ionics, 1988, 28-30(1): 424-426.
[22] Shimazu K J, Yamamoto Y, Saito Y, et al. Electric conductivity and Ti4+ ion substitution range in NASICON system. Solid State Ionics, 1995, 79: 106-110.
[23] Lin Z X, Yu H J, Tian S B. Phase relationship, electrical conductivity and crystal chemistry of Na3Zr2-xYbxSi2PO12 system. Solid State Ionics, 1990, 40-41: 59-62.
[24] Bayard M L, Barna G G. Complex impedance analysis of ionic-conductivity of Na1+xSixZr2P3-xO12 ceramics. Journal of Electroanalytical Chemistry, 1978, 91(2): 201-209.
[25] Gordon R S, Miller G R, McEntire B J, et al. Fabrication and characterization of nasicon electrolytes. Solid State Ionics, 1981, 3-4: 243-248.
[26] Schmid H, De Jonghe L C, Cameron C. Chemical stability of nasicon. Solid State Ionics, 1982, 6(1): 57-63.
[27] Kuriakose A K, Wheat T A, Ahmad A, et al. Synthesis, sintering and microstructure of NASICONS. Journal of the American Ceramic Society, 1984, 67(3): 179-183.
[28] Qiu F B, Zhu Q F, Yang X T, et al. Investigation of CO2 sensor based on NASICON synthesized by a new Sol-Gel process. Sensors and Actuators B: Chemical, 2003, 93(1/2/3): 237-242.
[29] Kida T, Miyachi Y, Shimanoe K, et al. NASICON thick film-based CO2 sensor prepared by a Sol-Gel method. Sensors and Actuators B, 2001, 80: 28-32.
[30] Traversa E, Aono H, Sadaoka Y, et al. Electrical properties of Sol-Gel processed NASICON having new compositions. Sensors and Actuators B, 2000, 65: 204-208.
[31] Shimizu Y, Azuma Y, Michishita S. Sol-Gel synthesis of NASICON discs from aqueous solution. Journal of Materials Chemistry, 1997, 7(8): 1487-1490.
[32] Yadav P, Bhatnagar M C. Structural studies of NASICON material of different compositions by Sol-Gel method. Ceramics International, 2012, 38(2): 1731-1735.
[33] Zhang S, Quan B F, Zhao Z Y, et al. Preparation and characterization of NASICON with a new Sol-Gel process. Materials Letters, 2003, 58(1/2): 226- 229.
[34] Ignaszak A, Pasierb P, Gajerski R, et al. Synthesis and properties of Nasicon-type materials. Thermochimica Acta, 2005, 426(1/2): 7-14.
[35] Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2: 65-71.
[36] Noguchi Y, Kobayashi E, Plashnitsa L S, et al. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochimica Acta, 2013,101: 59-65.
[37] Porkodi P, Yegnaraman V, Kamaraj P, et al. Synthesis of NASICON-a molecular precursor-based approach. Chemistry Materials, 2008, 20(20): 6410-6419.
[38] Baur W H, Dygas J R, Whitmore D H, et al. Neutron powder diffraction study and ionic-conductivity of Na2Zr2SiP2O12 and Na3Zr2Si2PO12. Solid State Ionics, 1986, 18-19(2): 935-943. |