[1] |
Vallet-Regi M, Ramila A, Del Real R P, et al. A new property of MCM-41: drug delivery system. Chem. Mater. , 2001, 13(2): 308-311.
|
[2] |
Cavallaro G, Pierro P, Palumbo F S, et al. Drug delivery devices based on mesoporous silicate. Drug Deliv., 2004, 11(1): 41-46.
|
[3] |
Izquierdo-Barba I, Martinez A, Doadrio A L, et al. Release evaluation of drugs from ordered three-dimensional silica structures. Eur. J. Pharm. Sci., 2006, 26(5): 365-373.
|
[4] |
Ford D M, Simanek E E, Shantz D F. Engineering nanospaces: ordered mesoporous silicas as model substrates for building complex hybrid materials. Nanotechnology, 2005, 16(7): S458-S475.
|
[5] |
Zhang H D, Sun Y H, Ye K Q, et al. Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(II)–porphyrin complexes. J. Mater. Chem., 2005, 15(31): 3181-3186.
|
[6] |
Brieler F J, Grundmann P, Fröba M, et al. Comparison of the magnetic and optical properties of wide-gap (II, Mn)VI nanostructures confined in mesoporous silica. Eur. J. Inorg. Chem., 2005, 36(47): 3597-3611.
|
[7] |
Jia M J, Seifert A, Berger M, et al. Hybrid mesoporous materials with a uniform ligand distribution: synthesis, characterization, and application in epoxidation catalysis. Chem. Mater., 2004, 16(5): 877-882.
|
[8] |
Slowing I I, Trewyn B G, Giri S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater., 2007, 17(8): 1225-1236.
|
[9] |
Balas F, Manzano M, Horcajada P, et al. Confinement and controlled release of bisphosphonates on ordered mesoporous silica- based materials. J. Am. Chem. Soc., 2006, 128(25): 8116-8117.
|
[10] |
Huang X L, Li L L, Liu T L, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5(7): 5390-5399.
|
[11] |
Doadrio A L, Sousa E M B, Doadrio J C, et al. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Control Release, 2004, 97(1): 125-132.
|
[12] |
Qu F Y, Zhu G S, Huang S Y, et al. An effective control release of captopril drug by silylation of mesoporous MCM-41. Chemphyschem., 2006, 7(2): 400-406.
|
[13] |
Munoz B, Ramila A, Perez-Pariente J, et al. MCM-41 Organic modification as drug delivery rate regulator. Chem. Mater., 2003, 15(2): 500-503.
|
[14] |
Qu F Y, Zhu G S, Lin H M, et al. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. Journal of Solid State Chemistry, 2006, 179(7): 2027-2035.
|
[15] |
Sun J H, Shan Z P, Maschmeyer T, et al. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir, 2003, 19(20): 8395-8402.
|
[16] |
Gao L, Sun J H, Li Y Z, et al. Bimodal mesoporous silicas functionalized with different level and species of the amino groups for adsorption and controlled release of aspirin. Journal of Nanoscience and Nanotechnology, 2011, 11(8): 6690-6697.
|
[17] |
Manzano M, Aina V, Arean C F, et al. Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chemical Engineering Journal, 2008, 137(1): 30-37.
|
[18] |
Trewyn B G, Whitman C M, Lin V S Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett., 2004, 4(11): 2139-2143.
|
[19] |
Zhu Y F, Shi J L, Shen W H, et al. Novel stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayers core-shell structure. Angew. Chem. Int. Ed., 2005, 44(32): 5083-5087.
|
[20] |
Zhu Y F, Shi J L, Li Y S, et al. Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics. J. Mater. Res., 2005. 20(1): 54-61.
|
[21] |
Xu W J, Gao Q, Xu Y, et al. Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technology, 2009, 191(1/2): 13-20.
|
[22] |
Kokubo T, Kushitani H, Sakka S, et al. Solution able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W3. J. Biomed. Mater. Res. , 1990, 24(6): 721-734.
|
[23] |
Chen C Y, Li H X, Davis M E. Studies on mesoporous materials. (I) Synyhesis and characterization of MCM-41. Microporous Mater. , 1993, 2(1): 17-26.
|
[24] |
Huo Q S, Leon R, Petroff P M, et al. Mesostructre design with gemini surfactants: supercage formation in a three dimensional hexagonal array. Science, 1995, 268(5212): 1324-1327.
|
[25] |
Ying J Y, Benziger J B, Navrotsky A.The structural evolution of alkoxide silica gels to glass: efect of catalyst pH. J. Am. Ceram. Soc., 1993, 76(10): 2571-2582.
|
[26] |
顾宇辉, 古宏晨, 徐 宏, 等(GU Yu-Hui, et al).正硅酸乙酯水解过程的半经验量子化学研究. 无机化学学报(Chinese J. Inorg. Chem), 2003, 19(12): 1301-1306.
|
[27] |
Gregg S J,Sing K S W. Adsorption, Surface Area and Porosity. Academic Press: London. 1982.
|
[28] |
Costa P J, Lobo M S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. , 2001, 13(2): 123-133.
|
[29] |
Heikkila T, Salonen J, Tuura J, et al. Mesoporous silica material TUD-I as a drug delivery system. Int. J. Pharm. , 2007, 331(1): 133-138.
|