[1] RADHAKRISHNAN S, PATRA A, MANASA·G, et al. Borocarbonitride-based emerging materials for supercapacitor applications: recent advances, challenges, and future perspectives. Adv. Sci., 2024, 11(4): 2305325. [2] LUC W, JIAO F.Synthesis of nanoporous metals, oxides, carbides, and sulfides: beyond nanocasting.ACC. Chem. Res., 2016, 49(7): 1351. [3] LU X F, WU D J, LI R Z, et al. Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A, 2014, 2(13): 4706. [4] SUN L, HUANG X, LI Y, et al. Controlled synthesis and lithium storage performance of NiCo2O4/PPy composite materials. J. Phys. Chem. Solids, 2021, 148: 109761. [5] NABI G, AHMED H, AHMAD R S, et al. Binder free 3D highly ordered Ta-NiCo2O4@CC nano-needle arrays as an efficient flexible supercapacitor electrode. J. Energy Storage, 2025, 108: 115089. [6] LI H, CHEN L, ZHOU Q, et al. NiCo2O4 used as a loading material to improve the capacitive performance of nitrogen-doped carbon aerogel. J. Mater. Sci., 2022, 57(26): 12497. [7] WANG W D, LI X F, ZHANG P P, et al. Preparation of NiCo2O4@CoS heterojunction composite as electrodes for high-performance supercapacitors. J. Electroanal. Chem., 2021, 891: 115257. [8] XIE L, LI M, ZHU P, et al. Novel combination of nickel-cobalt sulfide and oxide derived from Ni2CoS4@ZIF-67 for high performance supercapacitor. J. Alloys Compd., 2022, 898: 162861. [9] JIANG D, WEI C Y, ZHU Z Y, et al. Synthesis of 3D flower-like hierarchical NiCo-LDH microspheres with boosted electrochemical performance for hybrid supercapacitors. Inorg. Chem. Front., 2021, 8(19): 4324. [10] HU X, LIU S, WANG Y, et al. Hierarchical CuCo2O4@CoS-Cu/Co-MOF core-shell nanoflower derived from copper/cobalt bimetallic metal-organic frameworks for supercapacitors. J. Colloid Interface Sci., 2021, 600: 72. [11] KUMAR R, SAHOO S, JOANNI E, et al. Vacancy designed 2D materials for electrodes in energy storage devices. Chem. Commun., 2023, 59(41): 6109. [12] WANG Y, YANG H, LV H, et al. High performance flexible asymmetric supercapacitor constructed by cobalt aluminum layered double hydroxide @nickel cobalt layered double hydroxide heterostructure grown in-situ on carbon cloth. J. Colloid Interface Sci., 2022, 610: 35. [13] ZHENG R, LIN H, DING J, et al. A self-supporting multi-component collaborative structure for enhancing interface electron transfer in hybrid supercapacitor. J. Energy Storage, 2024, 75: 109565. [14] NGUYEN T B, YOON B, NGUYEN T D, et al. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon, 2023, 206: 383. [15] ZHANG X, LU W, LI C, et al. Rational design of boron-doped NiCo-glycerate spheres with covered nanosheets for high performance supercapacitors. Mater. Today Chem., 2024, 35: 101826. [16] CHEN J, WANG Q, PAN S, et al. Stepwise construction of hollow double shell cobalt sulfide spheres for enhanced hybrid supercapacitors. J. Energy Storage, 2024, 104: 114417. [17] ZHANG H, HAN J, XU J, et al. Self-assembled NiCo2O4 microspheres for hybrid supercapacitor applications. J. Mater. Sci., 2022, 57(9): 5566. [18] MOHAMMADI ZARDKHOSHOUI A, AMERI B, SAEED HOSSEINY DAVARANI S.α-MnS@Co3S4 hollow nanospheres assembled from nanosheets for hybrid supercapacitors. Chem. Eng. J., 2021, 422: 129953. [19] JIA H, WANG M, FENG M, et al. Synergistic enhancement of supercapacitor performance: modish designation of BPQD modified NiCo-LDH/NiCo2S4 hybrid nanotube arrays with improved conductivity and OH- adsorption. Chem. Eng. J., 2024, 484: 149591. [20] DILWALE S, GHOSH M, VIJAYAKUMAR V, KURUNGOT S.Electrodeposited layered sodium vanadyl phosphate(NaxVOPO4·nH2O)as cathode material for aqueous rechargeable zinc metal batteries. Energy & Fuels, 2022, 36(12): 6520. [21] ZHANG Z, HUANG Y, YAN J, et al. A facile synthesis of 3D flower-like NiCo2O4@MnO2 composites as an anode material for Li-ion batteries. Appl. Surf. Sci., 2019, 473: 266. [22] WANG W D, ZHANG P P, GAO S Q, et al. Core-shell nanowires of NiCo2O4@α-Co(OH)2 on Ni foam with enhanced performances for supercapacitors. J. Colloid Interface Sci., 2020, 579: 71. [23] PANG T, LUO M, LIU X, et al. Microflower-like CuS/Co3S4 composite as high-capacity and excellent-stability material for hybrid supercapacitors. J. Alloys Compd., 2024, 1008: 176563. [24] LIU J, WANG J, XU C, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci., 2018, 5(1): 1700322. [25] LIANG X, TANG L J, ZHANG Y C, et al. Robust graphene-based aerogel for integrated 3D asymmetric supercapacitors with high energy density. Chem.-Asian J., 2024, 19(10): e202400243. [26] WEI L, GU S, DUAN Y, et al. The construction of Newton's cradle type ions jumping path between layered double hydroxide interlayer for high-performance alkaline zinc batteries. J. Power Sources, 2025, 626: 235781. [27] LIU Z, TENG F, YUAN C, et al. Highly uniform MnCo2O4 hollow spheres-based all-solid-state asymmetric micro-supercapacitor via a simple metal-glycerate precursor approach. Energy Technol., 2019, 7(9): 1900314. [28] ZHOU Y, WEI L, LI C, et al. Nanostructure and phase engineering integration of amorphous Ni-Co sulfide/crystalline MnS/rGO cathode and ultra-small Fe2O3 nanodots/rGO anode for all-solid-state asymmetric supercapacitors. J. Energy Storage, 2022, 45: 103765. [29] HUANG Z Y, WANG J J, ZOU Y J, et al. Synthesis and application of NiLa-layered double hydroxides on nickel-coated carbon nanotubes with Co-ZIF-67 composite in supercapacitors. J. Energy Storage, 2024, 85: 8. [30] YANG H H, SUN Y X, WANG C, et al. Hollow polyhedral MnCoNi-LDH derived from metal-organic frameworks for high-performance supercapacitors. J. Electroanal. Chem., 2023, 928: 9. [31] CUI T, WU S, ZHOU S, et al. Three-dimensional microsphere-like cobalt-glycerolate strutted nickel hydroxidenitrate nanoflakes grown by hydrothermal method for asymmetric hybrid supercapacitors. J. Energy Storage, 2022, 52: 13. [32] ZHAO H D, YANG H X, ZHOU S Y, et al. Hydrothermal synthesis of NiCo2O4 nanowires for high-performance asymmetric supercapacitors. J. Solid State Electrochem., 2025, 29(11): 4557. [33] ZHU M Y, YANG Y, ZHANG X, et al. Cobalt-based zeolitic imidazole framework derived hollow Co3S4 nanopolyhedrons for supercapacitors. Appl. Organomet. Chem., 2024, 38(8): 11. [34] DU G, WANG H, LIU J, et al. Hierarchically porous mesostructured polydopamine nanospheres and derived carbon for supercapacitors. Langmuir, 2022, 38(29): 8964. [35] WANG X-K, SHI J, MI L-W, et al. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met., 2020, 39(9): 1053. [36] LUO L, QIAN X, WANG X.Bimetallic metal-organic frameworks and their derivatives for electrochemical energy conversion and storage: recent progress, challenges and perspective.J. Energy Storage, 2024, 98: 113052. [37] ZHANG X, WANG X, CAO Y, et al. Facile synthesis of ZnCo2O4@NiMoO4 with porous coated structures on carbon paper as stable and efficient Pt-free counter electrode materials for advanced dye-sensitized solar cells. Appl. Surf. Sci., 2023, 616: 156461. [38] LIU G, YUAN W, ZHAO Z, et al. Mo4/3B2Tx induced hierarchical structure and rapid reaction dynamics in MoS2 anode for superior sodium storage. Chem. Eng. J., 2024, 493: 152576. [39] ZHANG X, LI D, DONG C, et al. The synergistic supercapacitive performance of Mo-MOF/PANI and its electrochemical impedance spectroscopy investigation. Mater. Today Commun., 2019, 21: 100711. [40] ZUO W, XIE C, XU P, et al. A novel phase-transformation activation process toward Ni-Mn-O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv. Mater., 2017, 29(36): 1703463. [41] ZHAO W, YAN G, ZHENG Y, et al. Bimetal-organic framework derived Cu(NiCo)2S4/Ni3S4 electrode material with hierarchical hollow heterostructure for high performance energy storage. J. Colloid Interface Sci., 2020, 565: 295. [42] DASKALAKIS S, KOSTOPOULOU A, BRINTAKIS K, et al. Investigation of Si-coated multiwalled carbon nanotubes as potential electrodes for multivalent metal-ion electrochemical energy storage systems. J. Phys. Chem. C, 2023, 127(27): 13364. [43] WAN L, LIU J, LI X, et al. Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int. J. Hydrogen Energy, 2020, 45(7): 4521. [44] WEI Q, HUANG T, HUANG X, et al. High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdisciplinary Materials, 2023, 2(3): 434. [45] CHEN X, WU Y, ZHOU Y, et al. Preparation of sulfur vacancy modified NiCo2S4@NiCoS2 core-shell electrode material and its application in asymmetric supercapacitors. Electrochim. Acta, 2023, 454: 142376. [46] LIU G, WANG B, LIU T, et al. 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J. Mater. Chem. A, 2018, 6(4): 1822. [47] LIN J, JIA H, LIANG H, et al. Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors. Chem. Eng. J, 2018, 336: 562-569. [48] LI P, WANG X, YANG S.Preparation of core-shell NiCo-LDH@NiCo-hydroxysulfide by two-step electrodeposition for high-performance supercapacitors.J. Energy Storage, 2024, 97: 112838. [49] BEKOE APPIAGYEI A, OTABIL BONSU J, IN HAN J.Construction of NiCo-OH/Ni3S2 core-shell heterostructure wrapped in rGO nanosheets as efficient supercapacitor electrode enabling high stability up to 20,000 cycles.J. Electroanal. Chem., 2021, 889: 115226. [50] MA F, DAI X, JIN J, et al. Hierarchical core-shell hollow CoMoS4@Ni-Co-S nanotubes hybrid arrays as advanced electrode material for supercapacitors. Electrochim. Acta, 2020, 331: 135459. |