无机材料学报

• 研究论文 •    

多孔花状异质结构NiCo2O4/Co3S4-M:制备及其非对称超级电容器性能

石璞1, 鲁芊芊1, 刘鑫1, 张亚琴1, 李福枝2   

  1. 湖南工业大学 1.包装工程学院; 2.材料科学与工程学院,株洲 412007
  • 收稿日期:2025-10-04 修回日期:2025-12-19
  • 通讯作者: 李福枝, 副教授. E-mail: lifuzhi@hut.edu.cn
  • 作者简介:石 璞(1976-), 男, 副教授. E-mail: shipu@hut.edu.cn
  • 基金资助:
    湖南省教育厅项目(23A0416))

Porous Flower-like NiCo2O4/Co3S4-M Heterostructure: Preparation and Its Performance of Asymmetric Supercapacitor

SHI Pu1, LU Qianqian1, LIU Xin1, ZHANG Yaqin1, LI Fuzhi2   

  1. 1. School of packaging engineering, Hunan University of Technology, Zhuzhou 412007, China; 2. School of materials science and engineering, Hunan University of Technology, Zhuzhou 412007, China
  • Received:2025-10-04 Revised:2025-12-19
  • Contact: LI Fuzhi, associate professor. E-mail: lifuzhi@hut.edu.cn
  • About author:SHI Pu (1976-), male, associate professor. E-mail: shipu@hut.edu.cn
  • Supported by:
    Education Department of Hunan Province (23A0416)

摘要: 超级电容器具有高功率密度、快速充放电能力和长循环寿命,在储能领域展现巨大的应用潜力。然而,其能量密度较低,限制了进一步发展。本研究通过水热法、模板辅助法及硫化处理构筑了多孔花球状的NiCo2O4/Co3S4-M异质结构的电极材料,并系统研究其电化学性能。三电极体系中,NiCo2O4/Co3S4-M在1 A·g-1下比容量达2362 F·g-1。其多孔花球结构了提供丰富位点,异质界面优化了电子与离子传输,两者协同显著增强了材料的导电性及稳定性。进一步组装了以NiCo2O4/Co3S4-M花球为正极、多孔碳(PC)为负极的非对称超级电容器(NiCo2O4/Co3S4-M//PC),功率密度为375 W·kg-1时,其能量密度高达98.4 Wh·kg-1,功率密度增至7500 W·kg-1时,能量密度依然保持在45.42 Wh·kg-1。且循环稳定性优异,NiCo2O4/Co3S4-M//PC在5 A·g-1的电流密度下循环10000次后容量保持率为99.7%,库仑效率为97.56%。本研究通过异质结构设计与微观形貌调控的策略,有效实现了高比电容与优异的循环稳定性,为开发高性能超级电容器电极材料提供了新的研究思路。

关键词: 多孔花球状, 异质结构, 高比电容, 循环稳定性, 超级电容器

Abstract: Supercapacitors are demonstrated significant application potential in the energy storage field due to their high power density, rapid charge-discharge capability, and long cycle life. However, their relatively low energy density restricts further development. In this study, porous flowerball-like NiCo2O4/Co3S4-M heterostructured electrode materials were constructed via hydrothermal method, template-assisted growth, and sulfuration treatments, and their electrochemical performance was systematically investigated. In three-electrode system, NiCo2O4/Co3S4-M exhibits a specific capacitance of 2362 F·g-1 at 1 A·g-1. The porous flowerball structure affords abundant active sites, and the heterointerface facilitates electron/ion transport, synergistically boosting both conductivity and stability. Furthermore, an asymmetric supercapacitor (NiCo2O4/Co3S4-M//PC) was assembled using NiCo2O4/Co3S4-M flowerball as the cathode and porous carbon (PC) as the anode, achieving a high energy density of 98.4 Wh·kg-1 at a power density of 375 W·kg-1, which maintained 45.42 Wh·kg-1 with the power density even increased to 7500 W·kg-1, along with outstanding cycling stability. After 10000 cycles at a current density of 5 A·g-1, the capacitance retention rate reached 99.7% with a Coulombic efficiency of 97.56%. This study indicates that the strategy of heterostructure design and microstructure modulation can effectively achieve high specific capacity and superior cycling stability, providing new research insights for the development of high-performance supercapacitor electrode materials.

Key words: porous flowerball, heterostructure, high specific capacitance, cycling stability, supercapacitor

中图分类号: