无机材料学报

• 研究论文 • 上一篇    下一篇

磁铅石型稀土六铝酸盐热障涂层材料的制备与性能

许茗奕1,*, 熊瑛2, 王博2, 张艺馨2, 陈文博3, 曹学强3   

  1. 1.THL贵州先进功能涂层创新中心,贵州 550000;
    2.中国航发沈阳黎明航空发动机有限责任公司, 沈阳 110043;
    3.武汉理工大学 硅酸盐科学与先进建材全国重点实验室,武汉 430070
  • 收稿日期:2025-10-02 修回日期:2025-12-04
  • 作者简介:许茗奕(1996-),男,博士研究生. E-mail: xumingyi96925@163.com
  • 基金资助:
    国家自然科学基金重大研究计划项目(92360304); 国家自然科学基金青年项目(52302109); 湖北省自然科学基金青年项目(2023AFB075); 国家自然科学基金重点支持项目(92060201)

Fabrication and Properties of Magnetoplumbite-type Rare-Earth Hexaaluminate Thermal Barrier Coating Materials

XU Mingyi1,*, XIONG Ying2, WANG Bo2, ZHANG Yixin2, CHEN Wenbo3, CAO Xueqiang3   

  1. 1. Guizhou Advanced Functional Coatings Innovation Center of THL, Guiyang 550000, China;
    2. AECC Shenyang Liming Aero-Engine Corporation Ltd., Shenyang 110043, China;
    3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • Received:2025-10-02 Revised:2025-12-04
  • About author:XU Mingyi (1996-), male, PhD candidate. E-mail: xumingyi96925@163.com
  • Supported by:
    National Natural Science Foundation of China(92360304); National Natural Science Foundation of China(52302109); Natural Science Foundation of Hubei Province, China(2023AFB075); National Natural Science Foundation of China(92060201)

摘要: 磁铅石型稀土六铝酸盐 RMgAl11O19(RMA, R = La, Pr, Nd, Sm, Gd)因其高熔点、低热导率和优异的抗烧结性能,成为服役温度超过1300 ℃的潜在热障涂层材料。为揭示稀土离子取代对材料结构与性能的影响规律,采用固相反应法合成不同稀土离子取代的RMA粉体,并通过放电等离子烧结(SPS)制备致密陶瓷块体。结合不同测试手段,系统分析了稀土离子半径变化对晶体结构、晶粒生长、热物理及红外辐射性能的作用机理。结果表明,所有样品均呈六方磁铅石型结构,晶胞参数及体积随稀土离子半径减小而收缩,晶粒生长速率整体提高。RMA陶瓷的热扩散系数和热导率随温度升高而降低,热导率最低为3.19~2.86 W/(m·K)(25~1000 ℃),平均热膨胀系数为8.22×10-6~8.70×10-6 K-1(200~1300 ℃)。不同稀土离子取代对热物理性能影响有限,然而,材料在3~5 μm波段的红外发射率差异显著。其中,PrMA样品平均红外发射率最高(0.746),而LaMA样品最低(0.493)。本研究揭示了稀土离子取代对磁铅石型六铝酸盐热-辐射性能的影响,为设计在高温服役条件下兼具低热导率与高红外辐射性能的热障涂层材料提供了科学依据。

关键词: 热障涂层, RMgAl11O19, 晶粒生长速率, 热物理性能, 红外辐射性能

Abstract: Magnetoplumbite-type rare-earth hexaaluminate RMgAl11O19 (RMA, R = La, Pr, Nd, Sm, Gd) have emerged as promising candidates for next-generation thermal barrier coatings (TBCs) capable of operating at temperatures exceeding 1300 ℃, owing to their high melting points, low thermal conductivity, and remarkable sintering resistance. To elucidate the influence of rare-earth ion substitution on the structural and functional properties, a series of single rare-earth cation substituted RMA ceramics were synthesized via a solid-state reaction route and densified using spark plasma sintering (SPS). Their phase composition, microstructure, thermophysical, and infrared radiative properties were systematically characterized by different measurements. All samples crystallize in a hexagonal magnetoplumbite-type structure, with both lattice parameters and unit cell volumes exhibiting a gradual contraction as the rare-earth ionic radius decreases. The grain growth rate generally increases with a reduction in ionic radius. The thermal diffusivity and conductivity of RMA ceramics decrease with increasing temperature, reaching a minimum of 3.19-2.86 W/(m·K) in the temperature range of 25-1000 ℃. The average thermal expansion coefficients vary from 8.22×10-6 to 8.70×10-6 K-1 between 200 ℃ and 1300 ℃, indicating comparable thermo-physical across different compositions. In contrast, notable differences appear in the 3-5 μm infrared band, where PrMA exhibits the highest average emissivity (0.746) and LaMA exhibits the lowest (0.493), reflecting the critical role of rare-earth cation electronic structure in radiative behavior. This work elucidates the coupled thermal-radiative modulation mechanism induced by rare-earth ion substitution in magnetoplumbite-type hexaaluminates, offering valuable insights for the design of high-temperature TBC materials that combine low thermal conductivity with high infrared radiative performance.

Key words: thermal barrier coatings, RMgAl11O19, grain growth rate, thermo-physical properties, infrared radiation properties

中图分类号: