无机材料学报

• 研究论文 •    下一篇

高倍率性能NiMnx-LDH@Ni95Cu5电极的快速制备与性能研究

郭文静1(), 王广舒1, 彭凯1, 张旭海1, 曾宇乔1(), 蒋建清1,2   

  1. 1 东南大学 材料科学与工程学院 江苏省先进金属材料重点实验室南京 211189
    2 南京林业大学 机械电子工程学院南京 210037
  • 收稿日期:2025-05-20 修回日期:2025-06-30
  • 通讯作者: 曾宇乔, 教授. E-mail: zyuqiao@seu.edu.cn
  • 作者简介:郭文静(2001-), 女, 硕士研究生. E-mail: 18352295088@163.com.
  • 基金资助:
    国家自然科学基金(51771052)

Fast Fabrication and Performance Study of High Rate Capability NiMnx-LDH@Ni95Cu5 Electrode

GUO Wenjing1(), WANG Guangshu1, PENG Kai1, ZHANG Xuhai1, ZENG Yuqiao1(), JIANG Jianqing1,2   

  1. 1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
    2 College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Received:2025-05-20 Revised:2025-06-30
  • Contact: ZENG Yuqiao, professor. E-mail: zyuqiao@seu.edu.cn
  • About author:GUO Wenjing (2001-), female, PhD candidate. E-mail: 18352295088@163.com.
  • Supported by:
    National Natural Science Foundation of China(51771052)

摘要:

镍锰层状双金属氢氧化物(NiMn-LDH)具有环境友好、理论比电容高和循环稳定性好等诸多优点,是混合超级电容器的理想正极材料。但其电子电导能力不佳,导致实际比电容和倍率性能较差。尤其是mg·cm-2量级载量下,NiMn-LDH在50 A·g-1及以上大电流密度时的比电容远低于1500 F·g-1,难以满足混合超级电容器的实用要求。本研究提出了一种简单易行的两步电沉积工艺来制备新型高比电容、高倍率性能的NiMn-LDH@Ni95Cu5电极。通过改变沉积液中金属离子配比来调节电沉积在Ni95Cu5枝晶泡沫表面的NiMn-LDH的Mn/Ni原子比,并研究其对NiMn-LDH成分、元素价态、晶体结构、形貌、能带结构和电化学性能的影响。优化后NiMn0.6-LDH@Ni95Cu5电极展现出最佳的结晶性、最小的带隙以及良好的电化学性能,即便在载量高于2 mg·cm-2的条件下,1 A·g-1的比电容也可达2365 F·g-1,50 A·g-1的比电容达1803 F·g-1,且在20 A·g-1下循环3000次后电容保持率仍可达88.8%。本研究为设计下一代高性能混合超级电容器电极提供了新思路。

关键词: 混合超级电容器, NiMn-LDH, Mn/Ni比, 比电容, 倍率性能

Abstract:

NiMn-LDH (NiMn-layered double hydroxide) is a promising cathode material for hybrid supercapacitors due to its inherent environmental sustainability, exceptionally high theoretical specific capacitance, and robust cycling stability. However, its widespread practical application faces significant limitations due to poor electronic conductivity, which results in low specific capacitance and rate capability. Particularly at mg·cm-2 magnitude loading, the specific capacitance of NiMn-LDH at high current densities of 50 A·g-1 and above is much lower than 1500 F·g-1, a performance threshold critically insufficient for the energy-power balance required in commercial hybrid supercapacitor devices. To address this limitation, this work innovatively developed a novel NiMn-LDH@Ni95Cu5 electrode via a simple two-step electrodeposition strategy. Ni95Cu5 dendrites foam with hierarchical porous structure were prepared by hydrogen bubble template method, and NiMn-LDH was anchored to the Ni95Cu5 substrate by electrochemical deposition. By systematically adjusting the Mn/Ni stoichiometric ratio in NiMn-LDH electrodeposited on the surface of Ni95Cu5 dendritic foam through variations of the metal ion ratios in electrodeposition solution, its influence on the NiMn-LDH’s composition, elemental valence state, crystal structure, morphology, energy band configuration, and electrochemical behavior were investigated. With the Mn content in NiMnx-LDH increases, the size of NiMn-LDH nanosheets decreases. The optimized NiMn0.6-LDH@Ni95Cu5 electrode exhibits superior crystallinity, minimized charge-transfer resistance, the narrowest band gap, synergistically yielding exceptional electrochemical performance, delivering outstanding specific capacitances of 2365 F·g-1 at a current density of 1 A·g-1 and 1803 F·g-1 at an ultrahigh current density of 50 A·g-1, even under high mass loadings (>2 mg·cm-2). Furthermore, it demonstrates remarkable cycling stability, retaining 88.8% of its initial capacity after 3000 cycles at 20 A·g-1. Collectively, this study confirms that the composition, crystallinity and energy band structure of LDH can be synergistically optimized by precisely tuning the bimetallic ratio, thus solving the problem of specific capacitance and multiplicity performance degradation of high-loading electrodes, and provides a new idea for the design of next-generation high-performance hybrid supercapacitor electrodes.

Key words: hybrid supercapacitors, NiMn-LDH, Mn/Ni ratio, specific capacitance, rate capability

中图分类号: