无机材料学报, 2023, 38(9): 1055-1061 DOI: 10.15541/jim20220569

研究论文

溶液法制备AgBi2I7薄膜及其光电探测性能研究

胡盈,1, 李自清,2, 方晓生,1,2

1.材料科学系, 聚合物分子工程国家重点实验室, 复旦大学, 上海 200433

2.光电研究院, 上海市智能光电与感知前沿科学研究基地, 复旦大学, 上海 200433

Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties

HU Ying,1, LI Ziqing,2, FANG Xiaosheng,1,2

1. State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200433, China

2. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China

通讯作者: 李自清, 青年副研究员. E-mail:lzq@fudan.edu.cn;方晓生, 教授. E-mail:xshfang@fudan.edu.cn

收稿日期: 2022-09-27   修回日期: 2022-11-29   网络出版日期: 2022-12-16

基金资助: 国家自然科学基金(12061131009)
国家自然科学基金(51872050)
国家自然科学基金(62204047)

Corresponding authors: LI Ziqing, associate research fellow. E-mail:lzq@fudan.edu.cn;FANG Xiaosheng, professor. E-mail:xshfang@fudan.edu.cn

Received: 2022-09-27   Revised: 2022-11-29   Online: 2022-12-16

Fund supported: National Natural Science Foundation of China(12061131009)
National Natural Science Foundation of China(51872050)
National Natural Science Foundation of China(62204047)

摘要

AgBi2I7薄膜具有良好的光电特性和环境稳定性, 是构筑异质结紫外光电探测器的有力候选材料之一。本研究采用溶液法制备AgBi2I7薄膜, 通过优化前驱体溶液的浓度和溶剂类型(正丁胺和二甲基亚砜)等工艺参数, 研究了其光电探测性能。采用最优方案在宽带隙的GaN上制备AgBi2I7薄膜, 构建AgBi2I7/GaN异质结。该异质结对UVA射线具有良好的选择性探测(探测半峰宽约30 nm)。在3 V偏压和350 nm紫外光照射下, 器件开关比超过5个数量级, 达到27.51 A/W的高响应度和1.53×1014 Jones的高探测率。研究表明溶液法制备的AgBi2I7薄膜有望应用于构建高性能的异质结紫外光电探测器。

关键词: AgBi2I7薄膜; 溶液法; 异质结; 紫外光电探测

Abstract

AgBi2I7 thin film is one of the important candidates for constructing heterojunction ultraviolet photodetectors, due to their great optoelectronic properties and environmental stability. In this study, AgBi2I7 thin films were prepared by solution method and their photodetecting properties were investigated. By optimizing technological parameters such as concentration of the precursor solution and type of solvent (n-butylamine and DMSO), their photodetecting performance were investigated. AgBi2I7 thin films were fabricated on wide-bandgap GaN by optimal scheme to construct an AgBi2I7/GaN heterojunction. The heterojunction has a great selective detection of UVA-ray of which full width at half maximum is about 30 nm. Under 3 V bias and 350 nm UV irradiation, the On/Off ratio of the device exceeds 5 orders of magnitude, achieving a high responsivity of 27.51 A/W and a high detection rate of 1.53×1014 Jones. Therefore, the present research indicates that AgBi2I7 thin films prepared by solution method are promising to be applied to construct high-performance heterojunction ultraviolet photodetectors.

Keywords: AgBi2I7 thin film; solution method; heterojunction; ultraviolet photodetection

PDF (3199KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究. 无机材料学报, 2023, 38(9): 1055-1061 DOI:10.15541/jim20220569

HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties. Journal of Inorganic Materials, 2023, 38(9): 1055-1061 DOI:10.15541/jim20220569

全无机钙钛矿半导体材料在光电应用中具有广阔的发展前景[1-4]。基于全无机铅基钙钛矿材料(如铯铅溴(CsPbBr3)、铯铅碘(CsPbI3)等)制备的钙钛矿光电探测器能达到105以上的高光暗电流比和 55.71 A/W的高响应度[5], 与有机杂化钙钛矿光电探测器的性能相当[6]。然而铅的毒性限制了这些材料在光电探测领域的商业化应用, 发展新型无铅钙钛矿材料受到了广泛关注。由于Bi3+和 Pb2+具有相同的电子轨道构型, 铋基钙钛矿被认为是替代铅基钙钛矿的候选材料之一。AgBi2I7是一种AMxIy型类钙钛矿材料(A为一价离子Cs+, Ag+, CH3NH3+等, M为三价金属离子Bi3+等), 具有独特的光电特性和高离子电导率, 有望应用于光电探测领域。溶液法是制备AgBi2I7薄膜比较常用的方法, 具有操作简单、制备环境要求低、薄膜在自然环境下稳定性好等优势[7-9]。目前, 铋基钙钛矿光电探测器的响应度已经高达23.6 A/W, 但与铅基钙钛矿光电探测器相比依然有较大的差距[10]

铋基钙钛矿薄膜的结晶质量差导致内部的载流子传输效率低, 为了提高铋基钙钛矿薄膜的结晶质量, 研究人员不断完善溶液法制备AgBi2I7薄膜的工艺。Premkumar等[11]采用配体辅助再沉积的溶液方法制备了不同化学计量比的银铋碘(AgBixIy)量子点, 但得到的量子点材料环境稳定性较差。Kim等[12]采用一步旋涂法制备AgBi2I7薄膜, 探究了退火温度对材料性能的影响。Kulkarni等[13]采用弱溶剂中间体络合物调整薄膜的结晶质量。Iyoda等[14]通过优化组分和采用添加剂的方式延长载流子寿命。Seo等[15]采用动态铸造和斜坡退火工艺降低材料的非辐射复合率。Shao等[16]通过调节开始退火的时间改善薄膜形貌。溶液法制备AgBi2I7薄膜的工艺条件趋于成熟, 然而这些研究主要针对AgBi2I7薄膜在太阳能电池中的应用, 缺乏针对工艺过程对其光电探测性能影响的研究。探究溶液法制备的AgBi2I7薄膜在光电探测器中的应用及其制备工艺对薄膜光电特性的影响, 有望拓展AMxIy型类钙钛矿材料在光电探测领域中的应用, 促进无铅钙钛矿光电探测器的发展。

在铋基钙钛矿薄膜的工艺优化过程中, 溶液法制备AgBi2I7薄膜时前驱体的浓度和溶剂的挥发速度会显著影响成膜质量[13,17]。由于伯烷基胺基团(R-NH2)可溶解碘化银(AgI), 采用正丁胺制备前驱体溶液是溶液法制备AgBi2I7薄膜的常用方法。采用二甲基亚砜(DMSO)为溶剂制备前驱体溶液也是一种可行的方案。虽然AgI不溶于极性非质子溶剂DMSO, 但DMSO是一种路易斯碱配体, 在70 ℃下能与BiI3形成络合物, 研究表明这种络合物有助于AgI溶解在DMSO中[18]。此外, 纳米晶薄膜与成熟的商用半导体材料(如硅、锗、氮化镓GaN等)结合构建高质量的异质结, 能显著提升光探测性能[19-20]。Song等[21]制备了一种Ti3C2Tx MXene/GaN异质结光电二极管, 实现了光生电子空穴的有效分离, 显著提升了光电探测器的性能。

本工作采用溶液法制备全无机AgBi2I7薄膜, 通过对溶液浓度及溶剂种类的调控优化薄膜质量, 将AgBi2I7薄膜与宽带隙的GaN结合构建AgBi2I7/GaN异质结构, 研究该异质结的光电探测特性, 探究溶液法制备的AgBi2I7薄膜在紫外光电探测领域的应用, 从而极大提升了铋基钙钛矿光电探测器性能。

1 实验方法

1.1 材料与试剂

碘化铋(BiI3, 阿拉丁, AR)、碘化银(AgI, 阿拉丁, AR)、正丁胺(国药, AR)、二甲基亚砜(DMSO, 国药, AR)、氮化镓(GaN, 东莞市中镓半导体科技有限公司)、氯苯(CB, 99.8%, 北京百灵威)。

1.2 AgBi2I7薄膜的制备

采用正丁胺溶剂制备AgBi2I7薄膜 将不同质量的碘化铋、碘化银溶解于3 mL正丁胺中, 室温下搅拌30 min, 分别配成浓度为10%、14%、18%的前驱体溶液。衬底先后用丙酮、乙醇、去离子水超声清洗后, 等离子亲水处理。将前驱体正丁胺溶液以6000 r/min的速度旋涂在亲水处理后的衬底上, 150 ℃退火30 min后得到AgBi2I7薄膜, 依次将浓度为10%、14%、18%的前驱体正丁胺溶液制备的薄膜记作ABI-Bx(x=10, 14, 18)。

采用DMSO溶剂制备AgBi2I7薄膜图1所示, 将不同质量的碘化铋、碘化银溶解于3 mL DMSO中, 70 ℃下搅拌30 min, 分别配成浓度为14%、16%、18%的前驱体溶液。将前驱体DMSO溶液以1500 r/min的速度旋涂在亲水处理后的衬底上, 在旋涂步骤结束10 s前滴加CB, 90 ℃退火30 min后得到AgBi2I7薄膜, 依次将浓度为14%、16%、18%的前驱体DMSO溶液制备的薄膜记作ABI-Dy(y=14, 16, 18)。

图1

图1   采用DMSO溶剂制备AgBi2I7薄膜的实验流程图

Fig. 1   Experimental procedure of preparing AgBi2I7 thin film by DMSO solvent


1.3 AgBi2I7/GaN异质结构器件的制备

GaN衬底先后用丙酮、乙醇、去离子水超声清洗, 等离子亲水处理。用耐热胶带遮去部分GaN, 采用上述旋涂、退火工艺在未被遮住的GaN衬底上制备AgBi2I7薄膜。去除胶带, 用酒精除去残余胶, 得到AgBi2I7/GaN异质结构器件。

1.4 测试与表征

使用光学显微镜(Olympus BX5M)和扫描电子显微镜(SEM, JSM-6701F)研究样品的微观形貌。采用X射线衍射仪(XRD, Bruker D8-A25)记录样品的晶体结构。在光电探测性能测试中, 采用半导体特性分析仪(Keithley 4200A-SCS)记录样品的性能, 光源为150 W氙灯(OBB PowerAre), 并配有光栅单色仪以输出单色光。

2 结果与讨论

2.1 结构组成与薄膜形貌

AgBi2I7具有立方结构, Ag+和Bi3+均呈现碘的配位多面体, 如图2(a, b)所示, 其中Ag+呈六配位结构, 处于八面体碘基团构成的间隙中, Bi3+呈八配位结构, 处于六面体碘基团的中心, 碘化铋六面体与碘化银八面体通过共用角连接。图3(a, b)分别为以正丁胺和DMSO为溶剂制备的AgBi2I7薄膜的XRD图谱。图3(a)中位于2θ=12.8°, 29.5°的两个衍射峰分别对应AgBi2I7的(111)和(400)晶面, 位于2θ=8.9°, 39.7°的衍射峰对应AgBiI4。以正丁胺为溶剂时杂质相主要为AgBiI4, 随着浓度升高至18%, 杂质峰强度显著增大, 杂质相含量大幅增加。图3(b)中位于2θ=24°的衍射峰对应AgBi2I7的(311)晶面, 位于2θ=9.8°的衍射峰对应BiOI的(001)晶面, 这说明采用DMSO作溶剂不利于生成纯相AgBi2I7。小角度区域(2θ<10°)的强峰表明在现阶段薄膜保留了银铋和银碘化物配合物的中间体杂质[14,22], 此时尚未完全转换为AgBi2I7, 薄膜的杂质相主要是BiOI。实验表明样品ABI-B14的杂质含量较低, 物相较纯, 随着浓度继续降低, 物相更纯。

图2

图2   (a) AgBi2I7晶体结构和(b)处于八面体碘中心的六配位银离子

Fig. 2   (a) Crystal structure of AgBi2I7 and (b) six-coordinated silver-iodide octahedron sites


图3

图3   (a) ABI-Bx(x=10, 14, 18)和(b) ABI-Dy(y=14, 16, 18)的XRD图谱

Fig. 3   XRD patterns of (a) ABI-Bx (x=10, 14, 18) and (b) ABI- Dy (y=14, 16, 18)


采用不同浓度、不同溶剂配制前驱体溶液, 经退火后薄膜的形貌如图4(a, b)图S1图S2所示, 正丁胺溶剂形成的薄膜连续性好, 薄膜孔隙小, 其中样品ABI-B14呈现较均匀致密的单层薄膜。随着溶剂浓度增大薄膜出现多层晶体, 可能会影响光吸收和载流子传输。DMSO溶剂制备的薄膜均匀性和连续性较差, 这可能是AgI在DMSO中溶解性较差导致的, 其中样品ABI-D16的薄膜较均匀致密。图4(c)为薄膜的紫外-可见吸收光谱图, 根据吸收谱可计算薄膜的带隙, ABI-B14的直接带隙为1.74 eV, ABI-D16的直接带隙为1.90 eV(图S3)。

图4

图4   (a) ABI-B14和 (b) ABI-D16的SEM照片; (c) 不同前驱体制备的薄膜的紫外-可见光吸收光谱图

Fig. 4   SEM images of (a) ABI-B14 and (b) ABI-D16, and (c) UV-Vis absorption spectra of films from different precursors

Colorful figures are available on website


2.2 浓度与溶剂优化

不同的前驱液浓度和溶剂对薄膜的形貌和光电特性有显著影响。图5是不同薄膜的I-tI-V特性曲线, 电流大小如表1所示, 其中开关比(On/Off ratio)为光电流与暗电流的比值, 取决于薄膜的光电转换和电荷传输能力。薄膜尽管存在少量杂质, 但对光依然有明显响应。

图5

图5   AgBi2I7薄膜的I-tI-V曲线

Fig. 5   I-t and I-V curves of AgBi2I7 thin films

(a, b) I-t curves of (a) ABI-Bx (x=10, 14, 18) and (b) ABI-Dy(y=14, 16, 18) at 1 V; (c, d) I-V curves of (c) ABI-B14 and (d) ABI-D16

Colorful figures are available on website


表1   ABI-Bx(x=10, 14, 18)和ABI-Dy(y=14, 16, 18)的光暗电流

Table 1  Photocurrents and dark currents of ABI-Bx (x=10, 14, 18) and ABI-Dy (y=14, 16, 18)

SamplePhotocurrent/nADark current/nAOn/Off ratio
ABI-B100.560.491.14
ABI-B142.601.881.38
ABI-B180.980.811.21
ABI-D140.190.181.06
ABI-D160.320.271.20
ABI-D180.350.301.20

新窗口打开| 下载CSV


图5(a)为正丁胺体系薄膜的I-t特性曲线, 在低浓度区域, 随着浓度从10%升高至14%, 薄膜更加致密, 光电流从0.56 nA升高至2.6 nA, 开关比从1.14提高至1.38。当浓度从14%继续升高至18%, 薄膜中晶体出现多层堆叠, 缺陷增多, 光电流减小至0.98 nA, 开关比减小至1.21。图5(b)为DMSO体系薄膜的I-t特性曲线, 随着浓度升高, 薄膜更加致密, 电流也逐渐升高, 但ABI-D18的光电流的上升和下降速度较ABI-D16有所减缓, 这可能是因为高浓度下薄膜均匀性较差, 不利于光吸收和载流子传输。均匀的薄膜能增强对入射光的吸收, 有利于提升光电流和响应度, 而密度过大反而会限制入射光传播[23], 因此选择密度适中的薄膜形貌更有利于应用在光电探测中。图5(c, d)分别为ABI-B14、ABI-D16的I-V特性曲线, 前者在350 nm左右响应最佳, 后者的最佳响应波长在550 nm左右。相比之下ABI-B14更致密, 杂质含量少, 电流和开关比均较高, 更适于制备光电探测器。

2.3 AgBi2I7/GaN异质结的光电探测性能

为了进一步探究溶液法制备的AgBi2I7薄膜在紫外光电探测领域的应用, 将14%的前驱体正丁胺溶液旋涂在GaN衬底上, 异质结器件的结构见图6(a)图6(b)为异质结的能带示意图, AgBi2I7薄膜的直接带隙约为1.74 eV, GaN的带隙约为3.4 eV, 器件构成I型异质结, AgBi2I7薄膜的导带底和价带顶均在GaN的禁带中, 电子和空穴被约束在界面的同一侧即AgBi2I7薄膜中, 在这种I型异质结构中, 提高光激发电荷浓度可以有效改善光吸收和电子传输[24]

图6

图6   AgBi2I7/GaN异质结的结构与光电特性

Fig. 6   Device structure and photoelectric properties of AgBi2I7/GaN heterojunctions

(a) Device structure; (b) Energy diagram; (c) I-V curves; (d) I-t curves to 350 nm UV light; (e) Responsivity and detectivity; (f) Performance comparison of lead-free photodetectors

Colorful figures are available on website


异质结光电探测器是基于PN结构筑的, 具有PN结的整流特性即单向导电性, 异质结正偏时, 外加电场与内建电场方向相反, 总势垒高度降低, 出现由n区经空间电荷区向p区扩散的电子流和由p区经空间电荷区向n区扩散的空穴流, 器件处于导通状态。在反偏状态下外加电场与内建电场方向相同, 势垒增高, 阻碍了电子和空穴流动。图6(c)为异质结的I-V特性曲线, 在400 nm以上波长的光照实验下制备的器件具有整流特性, 在 -3 V和3 V偏压下, 400 nm光照在薄膜中产生的光电流分别为1.59和0.31 nA, 整流比为5.13, 表明交界面处形成了pn结。这有利于分离电子和空穴, 能提高光暗电流比。在400 nm以上波长的可见光照射下, 器件的光电响应有所增强, 如在-3 V偏压、400 nm (2.403 mW/cm2)可见光照射下, 器件电流从0.25 nA上升至1.59 nA, 开关比约为6.36, 但器件的电流和光暗电流比依然较小, 不能实现对可见光的探测。

图6(c)中在350 nm以下波长光的照射下, 器件的反偏电流在电压大于0.6 V时突然增大, 超过正偏电流, 这是因为在低波长光照下异质结中载流子浓度显著升高, 阻挡层变薄, 在较低的反偏电压下就能出现隧道击穿现象, 击穿后光电流显著增大, 远大于正偏下的光电流。由于电击穿是可逆的, 在pn结功率不超过耗散功率的情况下, 器件具有稳压二极管的特性, 可稳定地用于光电探测。在350 nm (2.216 mW/cm2)紫外光照射下, 器件表现出明显的光电响应, 在-3 V偏压下, 器件电流从0.252 nA上升至179.1 nA, 开关比约为710.7; 在3 V偏压下, 器件电流从0.257 nA上升至0.223 mA, 开关比约为8.7×105, 有望应用于紫外光电探测。图6(d)为异质结在350 nm光照、3 V偏压下的I-t特性曲线, 与纯AgBi2I7薄膜相比, 异质结的开关比提高了约5个数量级。

衡量光电探测器光电转换效率的重要参数有响应度(Responsivity)、探测率(Detectivity)和外量子效率(External quantum efficiency)。响应度R(A/W)反映器件对光响应的灵敏度, 为单位面积、单位光照功率产生的光生电流, 计算公式为:

$R=({{I}_{\text{ph}}}-{{I}_{\text{d}}})/{{P}_{\lambda }}S$

其中, ${{P}_{\lambda }}$(W/cm2)为入射光的功率密度, ${{I}_{ph}}(\text{A})$为光电流, ${{I}_{\text{d}}}(\text{A})$为暗电流, $S(\text{c}{{\text{m}}^{2}})$是器件的有效光照面积。探测率D*(Jones)是用来衡量器件对弱信号的响应灵敏度, 计算公式为:

${{D}^{*}}=\frac{R}{\sqrt{2e{{I}_{\text{d}}}/S}}$

其中, $~$e(1.6$\times $10–19 C)为单位电荷量。外量子效率EQE是指单位光子产生的光生载流子数量, 计算公式为:

$\text{EQE}=\frac{Rhc}{e\lambda }\times 100%$

其中, $R$为响应度(A/W), h为普朗克常数(6.26$\times $10–34 J$\cdot $s), $c$为光速(3.0$\times $108 m/s), $\lambda $为入射光波长(m)。

图6(e)图S4为不同波长下器件的响应度(R)、探测率(D*)和外量子效率(EQE), 在350 nm波长下器件具有最高的光电流, 响应度和探测率分别达到27.51 A/W和1.53×1014 Jones, 外部量子效率最高达9770%。图6(e)表明基于AgBi2I7/GaN异质结构建的光电探测器在340~380 nm的范围内具有较好的光电响应, 在UVA射线的探测中具有重要的应用价值, 有望实现UVA射线的选择性探测, 探测半峰宽低至30 nm以内。图6(f)为该器件与常见的无铅钙钛矿光电探测器性能的比较, AgBi2I7/GaN异质结光电探测器具有更优越的光电探测性能(表S1)。

3 结论

采用溶液法能够在较温和的环境下制备AgBi2I7薄膜, 本研究通过优化前驱体溶剂和浓度提高薄膜的均匀性和光电响应特性, 从而实现在光电探测器上的应用。将AgBi2I7薄膜与宽带隙的GaN结合构建异质结, 器件具有良好的整流特性和对紫外UVA射线的选择探测特性。在3 V偏压和350 nm紫外光的照射下, 器件的开关比超过5个数量级, 响应度和探测率分别达到27.51 A/W和1.53×1014 Jones, 外部量子效率最高达9770%, 在紫外光电探测领域具有广阔的应用前景。本研究采用的溶液法一步旋涂工艺和参数优化方案也可用于制备其他AMxIy类钙钛矿材料。

补充材料

本文相关补充材料可登录 https://doi.org/10.15541/jim20220569查看。

补充材料

溶液法制备AgBi2I7薄膜及其光电探测性能研究

胡盈1, 李自清2, 方晓生1,2

(复旦大学 1. 材料科学系, 聚合物分子工程国家重点实验室; 2. 光电研究院, 上海市智能光电与感知前沿科学研究基地, 上海 200433)

图S1

图S1   AgBi2I7薄膜的光学显微镜照片

Fig. S1   Optical micrographs of AgBi2I7 thin films

(a) ABI-B10; (b) ABI-B14; (c) ABI-B18; (d) ABI-D14; (e) ABI-D16; (f) ABI-D18


图S2

图S2   AgBi2I7薄膜的SEM照片

Fig. S2   SEM images of AgBi2I7 thin films

(a) ABI-D14; (b) ABI-D18; (c) ABI-B10; (d) ABI-B18


图S3

图S3   (a) ABI-B14和(b) ABI-D16的Tauc图谱

Fig. S3   Tauc plots of (a) ABI-B14 and (b) ABI-D16


图S4

图S4   AgBi2I7/GaN器件的EQE图谱

Fig. S4   EQE of AgBi2I7/GaN heterojunctions


表S1   典型无铅钙钛矿光电探测器光电性能总结

Table S1  Summary of optoelectronic performances of typical lead-free perovskite photodetectors

PhotodetectorLight/nmOn/Off ratioResponsivity/(A·W-1)Detectivity /JonesRef.
Ag-AgBi2I7-GaN-Ag3508.7×10527.511.53×1014This work
Graphene-Cs3Bi2I9-p-Si650>10223.61.75×1013[1]
In-GaN-Cs2AgBiBr6-NiO-Au3651.16×1030.333.28×1011[2]
ITO-SnO2-CsBi3I10-Au6502.33×1050.21.8×1013[3]
Graphene-CsSnI3-SnO2-ITO4051040.2371.18×1012[4]
FTO-SnO2-Ag2BiI5-carbon4736.25×1050.35.3×1012[5]
ITO-SnO2-Cs3Bi2I9-PTAA-Au-ITO4055.7×1030.052>1012[6]
Au-CsCu2I3/GaN-In3251.1×1040.371.83×1013[7]
Au-Cs3Sb2I9-Au4505.5×1030.4461.27 × 1011[8]

新窗口打开| 下载CSV


参考文献:

[1] WANG J, LI Y, MA L, et al. Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection. Adv. Funct. Mater., 2022, 32(30): 2203072.

[2] YIN S, CHENG Y, LI Y, et al. Self-powered ultraviolet-blue photodetector based on GaN/double halide perovskite/NiO heterostructure. J. Mater. Sci., 2021, 56(24): 13633.

[3] HAO D, LIU D, SHEN Y, et al. Air-stable self-powered photodetectors based on lead-free CsBi3I10/SnO2 heterojunction for weak light detection. Adv. Funct. Mater., 2021, 31(21): 2100773.

[4] GAO Z, ZHOU H, DONG K, et al. Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nanomicro Lett., 2022, 14(1): 215.

[5] SHUANG Z, ZHOU H, WU D, et al. High-performance Ag2BiI5 Pb-free perovskite photodetector. Photonics Res., 2022, 10(8): 1886.

[6] DONG K, ZHOU H, XIAO M, et al. Semi-transparent, high- performance lead-free Cs3Bi2I9 single crystal self-driven photodetector. Appl. Phys. Lett., 2022, 120(19): 191102.

[7] ZOU C, LIU Q, CHEN K, et al. A high-performance polarization- sensitive and stable self-powered UV photodetector based on a dendritic crystal lead-free metal-halide CsCu2I3/GaN heterostructure. Mater. Horizons, 2022, 9(5): 1479.

[8] LAI Z, MENG Y, WANG F, et al. Direct drop-casting synthesis of all-inorganic lead and lead-free halide perovskite microcrystals for high-performance photodetectors. Nano Res., 2022, 15(4): 3621.

参考文献

MENG G, YE Y, FAN L, et al.

Recent progress of halide perovskite radiation detector materials

J. Inorg. Mater., 2020, 35(11): 1203.

DOI      [本文引用: 1]

Owing to high X/&#x003b3;-ray absorption coefficient, high carrier mobility lifetime product, and low temperature solution growth, halide perovskites emerged as promising room temperature radiation detector materials, which outperform traditional high-purity Ge and CdZnTe materials in term of low-cost, chip compatibility and large-area imaging. Starting from the fundamental properties of halide perovskites and the principle of radiation detectors, the development of halide perovskite radiation detectors since 2015 was briefly introduced. Then, recent progresses of direct radiation detectors (intensity, imaging, energy spectroscopy) and indirect scintillator detectors were systematically reviewed, and the crucial factors for high-performance detectors were discussed, which could provide valuable guidance for further boosting performance of halide-perovskite-based radiation detectors in future.

LI Z Q, Li, Z L, Shi Z F, et al.

Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure

Adv. Funct. Mater., 2020, 30(28): 2002634.

DOI      URL     [本文引用: 1]

WANG X, ZHANG T, LOU Y, et al.

All-inorganic lead-free perovskites for optoelectronic applications

Mater. Chem. Front., 2019, 3(3): 365.

DOI      URL     [本文引用: 1]

BU H, HE C, XU Y, et al.

Emerging new-generation detecting and sensing of metal halide perovskites

Adv. Electron. Mater., 2022, 8(5): 2101204.

DOI      URL     [本文引用: 1]

PERVEEN A, HUSSAIN S, XU Y, et al.

Solution processed and highly efficient UV-photodetector based on CsPbBr3 perovskite- polymer composite film

J. Photochem. Photobiol. A, 2022, 426: 113764.

DOI      URL     [本文引用: 1]

ZHU T, SHEN L, ZHANG D, et al.

Solution-processed ternary perovskite-organic broadband photodetectors with ultrahigh detectivity

ACS Appl. Mater. Interfaces, 2022, 14(16): 18744.

DOI      URL     [本文引用: 1]

YANG X, ZHONG S, WANG K, et al.

Study of resistive switching and biodegradability in ultralow power memory device based on all-inorganic Ag/AgBi2I7/ITO structure

Adv. Mater. Interfaces, 2022, 9(17): 2200237.

DOI      URL     [本文引用: 1]

TURKEVYCH I, KAZAOUI S, ITO E, et al.

Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites

ChemSusChem, 2017, 10(19): 3754.

DOI      PMID      [本文引用: 1]

Hybrid CPbX (C: Cs, CH NH ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C ABX double perovskites based on alternating corner-shared AX and BX octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX and BX octahedra with the general formula A B X (x=a+3 b) such as Ag BiI, Ag BiI, AgBiI, AgBi I. As perovskites were named after their prototype oxide CaTiO discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO. We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO /Ag BiI /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %.© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

LI Z Q, LIU X Y, ZUO C L, et al.

Supersaturation-controlled growth of monolithically integrated lead-free halide perovskite single-crystalline thin film for high-sensitivity photodetectors

Adv. Mater., 2021, 33(41): 2103010.

DOI      URL     [本文引用: 1]

WANG J, LI Y, MA L, et al.

Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection

Adv. Funct. Mater., 2022, 32(30): 2203072.

DOI      URL     [本文引用: 1]

PREMKUMAR S, LIU D, ZHANG Y, et al.

Stable lead-free silver bismuth iodide perovskite quantum dots for UV photodetection

ACS Appl. Nano Mater., 2020, 3(9): 9141.

DOI      URL     [本文引用: 1]

KIM Y, YANG Z, JAIN A, et al.

Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics

Angew. Chem. Int. Ed., 2016, 55(33): 9586.

DOI      URL     [本文引用: 1]

KULKARNI A, JENA A K, IKEGAMI M, et al.

Performance enhancement of AgBi2I7 solar cells by modulating a solvent- mediated adduct and tuning remnant BiI3 in one-step crystallization

Chem. Comm., 2019, 55(28): 4031.

DOI      URL     [本文引用: 2]

IYODA F, NISHIKUBO R, WAKAMIYA A, et al.

Ag-(Bi, Sb, In, Ga)-I solar cells: impacts of elemental composition and additives on the charge carrier dynamics and crystal structures

ACS Appl. Energy Mater., 2020, 3(9): 8224.

DOI      URL     [本文引用: 2]

SEO Y, HA S R, YOON S, et al.

Dynamic casting in combination with ramped annealing process for implementation of inverted planar Ag3BiI6 rudorffite solar cells

J. Power Sources, 2020, 453: 227903.

DOI      URL     [本文引用: 1]

SHAO Z P, LE MERCIER T, MADEC M B, et al.

AgBi2I7 layers with controlled surface morphology for solar cells with improved charge collection

Mater. Lett., 2018, 221: 135.

DOI      URL     [本文引用: 1]

JIN S Y, DONG-WON K.

Optimization of bismuth-based inorganic thin films for eco-friend, Pb-free perovskite solar cells

J. Electr. Eng. Technol., 2018, 31(2): 117.

[本文引用: 1]

SHADABROO M S, ABDIZADEH H, SHABANI M, et al.

Solvent engineering for controlled crystallization and growth of all-inorganic Pb-free rudorffite absorbers of perovskite solar cells

Inorg. Chem., 2021, 60(15): 11110.

DOI      URL     [本文引用: 1]

ABDUL AMIR H A A, FAKHRI M A, ALWAHIB A A, et al.

Synthesis of gallium nitride nanostructure using pulsed laser ablation in liquid for photoelectric detector

Mater. Sci. Semicond. Process, 2022, 150: 106911.

DOI      URL     [本文引用: 1]

ZHANG M, LUO Q, SHENG C, et al.

Space-confined growth of large-mismatch CsPb(BrxCI1-x)3/GaN heterostructures with tunable band alignments and optical properties

Inorg. Chem. Front., 2022, 9(18): 4661.

DOI      URL     [本文引用: 1]

Space-confined growth strategy is developed to grow large-mismatch CsPb(Br1−xClx)3/GaN heterostructures with type-II band alignment and tunable optical properties'.

SONG W, CHEN J, LI Z L, et al.

Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs

Adv. Mater., 2021, 33(27): 2101059.

DOI      URL     [本文引用: 1]

MASHADIEVA L F, ALIEV Z S, SHEVELKOV A V, et al.

Experimental investigation of the Ag-Bi-I ternary system and thermodynamic properties of the ternary phases

J. Alloys Compd., 2013, 551: 512.

DOI      URL     [本文引用: 1]

ZHANG Z M, FANG X S.

Preparation and photodetection property of ZnO nanorods/ZnCo2O4 nanoplates heterojunction

J. Inorg. Mater., 2019, 34(9): 991.

[本文引用: 1]

XUE X, LU C, LUO M, et al.

Type-I SnSe2/ZnS heterostructure improving photoelectrochemical photodetection and water splitting

Sci. China Mater., 2022, 66(1): 127.

DOI      [本文引用: 1]

/