Collection of Quantum Dot(202412)
Perovskite CsPbBr3 quantum dots (PQDs) encapsulated within borosilicate glass can markedly improve their stability, expanding their applicability in sectors under lighting and display of light emitting diode (LED). However, this encapsulation has unintended consequence of reducing both the photoluminescence (PL) intensity and PL quantum yields (PLQY). This research aims to enhance the PL intensity of CsPbBr3 perovskite quantum dots glass (PQDs@glass) by exploring the effects of thermal induction temperature and Pb2+ content on its structural properties. The results demonstrate that the optimal thermal induction temperature for maximizing PL intensity is 460 ℃, with a Pb2+ concentration of 6 mol. The study revealed that the increase in Pb2+ concentration led to the densification of the glass network structure and altered the diffusion behavior of glass components. This alteration affected the crystallization process of PQDs, which ultimately resulted in variations in the luminous intensity of PQDs@glass. This study achieved a highly desirable PLQY of 95.6% for PQDs@glass and successfully carried out size-controllable preparation of PQDs within a borosilicate glass matrix. Remarkably, the obtained results show that over 86% of the obtained PQDs particles fall within a narrow size range of 6-14 nm with average diameter of 10 nm, leading to a well-defined size distribution. Notably, these PQDs exhibit exceptional stability, as evidenced by their ability to retain an extraordinary 98.9% of the initial emission intensity following ten consecutive thermal cycles spanning from room temperature to 200 ℃. Finally, to verify its applicability in LED lighting and display, the obtained PQDs@glass powder was blended with polydimethylsiloxane (PDMS), yielding exemplary LED devices which exhibit an exceptional color gamut range surpassing 110% of the standard RGB (sRGB) color space. In conclusion, this study lays the groundwork for the scalable synthesis of PQDs@glass and paves the way for its utilization in the realm of LED device technology.
Absorptive materials, by absorbing electromagnetic wave energy, effectively mitigate electromagnetic interference through reduction or elimination of wave reflection. The electromagnetic parameters of materials determine their electromagnetic wave absorption performance. Traditional control strategies, such as adjusting filler ratio, changing macroscopic morphology, and regulating composite methods, have certain limitations to control their structure and cannot fundamentally alter their electromagnetic parameters, which severely hinders their further development. Now, micro-nanostructure design strategies can basically change electromagnetic parameters of the materials by altering their electrical conductivity, charge density and magnetic properties, showing significant advantages in controlling electromagnetic wave absorption capacity. However, the precise micro-nanostructure design and the mass production still face challenges to be overcome. Additionally, structure-property relationship between micro-nanostructures and electromagnetic wave response, and its underline mechanisms are still not fully understood. Herein, a comprehensive review on these relationships was introduced to elucidate the advantages of micro-nanostructure design strategies for regulating electromagnetic wave absorption capacity. Moreover, by introducing these strategies, such as element doping, surface effect modulation and nucleation-controlled growth, this review provides researchers with deep insights and theoretical guidance for modulating electromagnetic properties through micro-nanostructure design. Finally, the research progresses on electromagnetic performance modulation through micro-nanostructure design based on the case of quantum dots, nanocrystals and nanowires, as well as the current research status and prospects in the field of electromagnetic absorption were summarized, providing a theoretical foundation and strategic support for the development of micro-nanoparticles.
Perovskite light-emitting diodes (PeLEDs), owing to their unique photoelectric performance, show promising prospects in display applications. Red, green, and blue monochromatic PeLEDs have achieved remarkable breakthroughs, but the study of red/green/blue perovskite co-electroluminescence is still delayed. This study proposed a strategy that an intermediate connection layer (ICL) with hole/electron generation and transport capability is introduced between perovskites. On the one hand, introduction of the ICL can inhibit ion exchange and energy transfer. On the other hand, ICL has a charge-generation function that ensures different perovskite centers capture enough carriers. Furthermore, the thickness of the hole transport layer (NPB) is optimized. Furthermore, the thickness of the hole transport layer (NPB) is regulated, the blue/green tandem PeLED achieved relatively balanced luminescence and exhibits the largest EQE of 0.33%. The developed red/green/blue tandem PeLED exhibits the highest EQE of 0.5%, which is the first report in the field of PeLEDs, and exhibits the largest External Quantum Efficiency(EQE) of 0.33%. The developed red/green/blue tandem PeLED exhibits the highest EQE of 0.5%. In conclusion, this work provides a reference strategy for the co-electroluminescence of multicolor perovskites, which is expected to promote the development of perovskite in display applications.
Preparation of silver selenide (Ag2Se) based thin films is significant to the micro devices. However, most of reported methods for preparing Ag2Se films have not achieved the accuracy control and flexible pattern design of films. Inkjet printing technology is believed to provide a valid approach to solve this problem by which combination Ag2Se and inkjet printing technology shows high value and importance. In this work, Ag2Se nanoparticles were synthesized by solvothermal method and then dispensed into different solvents to obtain the ink with high stability. Jetting parameters were further developed to achieve the jetting of Ag2Se ink and optimize the morphology of droplets. Ag2Se thin films were prepared on polyimide substrates via inkjet printing with different printing layers. As-printed films were finally annealed to increase the crystalline and density. The phase and surface morphology of Ag2Se films were characterized and the electrical conductivity of the films was measured by using four-probe measurement. Ag2Se films can achieve higher density and crystallinity with ink concentration and printing layers increasing, which leads to higher electrical conductivity. Improvement of structure and performance of Ag2Se films result from the increasing deposition and stacking density of Ag2Se nanoparticles. The electrical conductivity of inkjet-printed Ag2Se film can reach as high as 399 S·cm-1 at the ink concentration of 5 mg·mL-1 and the number of printing layers of 40, which provides a new orientation to prepare Ag2Se based films and devices.
Black phosphorus (BP) with excellent and unique physical and chemical properties has emerged as the most promising semiconductor for energy storage and conversion, micro-nano devices, photo- and electro-catalysis, biomedicine, and so on. It is crucial to synthesize high-quality precursors of orthorhombic BP for realizing the applications of two-dimensional BP and zero-dimensional BP quantum dots. Herein, the effects of mineralizer components and ratios on BP growth were studied by the chemical vapor transport (CVT) method without temperature gradient. The results indicate that orthorhombic BP can be synthesized under some experimental combinations that can be considered viable only when tin (or lead) and iodine coexist together with the appropriate ratio. And the mass ratio ranges of tin and iodine w(Sn/I2) for BP preparation is wide, and the size of BP crystal obtained at w(Sn/I2)=0.47 is up to 1.2 cm, of which yield and crystal quality are superior. Combined with the nucleation and growth mechanism of BP, tin and iodine are severely significant for the nucleation and growth of BP, which has been widely accepted. Mineralization effect of iodine is more obvious than that of tin, and sufficient tin contributes to the synthesis of large-size bulk BP crystals without temperature gradient. As a result, w(Sn/I2)=0.47 is the optimal minera lizer ratia for fabricating orthorhombic BP in this work.
Metal sulfide Ag2S is an attractive semiconductor due to its excellent physical and chemical property that enable it with wide applications in fields of catalysis, sensing, optoelectronics in past years. In present work, ϕ18 mm× 50 mm Ag2S ingot was successfully prepared using zone melting method and its thermoelectric (TE) behavior was investigated. Ag2S has standard monoclinic P21/c space group (α-Ag2S phase) below 450 K and transfer to cubic structure (β-Ag2S phase) over this temperature. Ag2S is a n-type semiconductor as the Seebeck coefficient S is always negative due to the Ag interstitial ions in the material that can provide additional electrons. S is about -1200 µV·K-1near room temperature, declines to -680 µV·K -1 at 440 K and finally decreases to ~-100 µV·K -1at β-Ag2S state. The electrical conductivity (σ) of α-Ag2S is almost zero. However, the value sharply jumps to ~40000.5 S·m -1 as the material just changes to β-Ag2S at 450 K and then gradually deceases to 33256.2 S·m -1 at 650 K. Hall measurement demonstrates that carrier concentration nH of Ag2S is suddenly increased from the level of ~10 17 cm-3 to ~1018 cm-3during phase transition. Total thermal conductivity κ of α-Ag2S is ~0.20 W·m -1·K-1 but is ~0.45 W·m-1·K-1of β-Ag2S. Ultimately, a maximum ZT=0.57 is achieved around 580 K that means Ag2S might be a promising middle-temperature TE material.