Not found Special Issue of HUANG Qing Professor

Default Latest Most Read
Please wait a minute...
For Selected: Toggle Thumbnails
Layered Ternary Materials and Their Derivatives is Still Unfolding
HUANG Qing, WANG Jing-Yang
Journal of Inorganic Materials    2020, 35 (1): 0-0.   DOI: 10.15541/jim20190800
Abstract528)   HTML45)    PDF(pc) (267KB)(700)       Save
Reference | Related Articles | Metrics | Comments0
Molten Salt Assisted Synthesis of Dy3Si2C2 Coated SiC Powders and Sintering Behavior of SiC Ceramics
WAN Peng, LI Mian, HUANG Qing
Journal of Inorganic Materials    2021, 36 (1): 49-54.   DOI: 10.15541/jim20200068
Abstract767)   HTML33)    PDF(pc) (3962KB)(1291)       Save

Silicon carbide is widely used because of its excellent physical and chemical properties. The chemical bonding characteristics of SiC make it difficult to be sintered. Therefore, preparation of high-quality SiC ceramics is one of the challenges in SiC research field. In this study, the ternary rare-earth carbide Dy3Si2C2 was proposed as a new sintering additive for SiC ceramics, through the phase transition of Dy-Si-C system at high temperatures to promote the densification of SiC. The Dy3Si2C2 coated SiC powders were synthesized via an in-situ reaction between metal Dy and SiC in high temperature molten salts. The Dy3Si2C2 coated SiC powder was sintered by spark plasma sintering (SPS), at 1800 ℃, 45 MPa. As the result, high-purity SiC ceramic with the density of 99% and thermal conductivity of 162.8 W·m -1·K -1was obtained to form the SiC-Dy3Si2C2 raw material with n(Dy) : n(SiC)=1 : 4. Further study shows that Dy3Si2C2 and SiC undergo a eutectic reaction at high temperatures, which generates liquid phase at the grain boundaries and promotes the densification of SiC ceramics. This study shows that the ternary rare-earth carbides Re3Si2C2 (Re=La, Ce…) has great potential to be used as the sintering additive for SiC.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Electron Irradiation Induced Phase-separation Behavior in AlF3 Doped Alumina Ceramic with Superior Sensitivity
SHEN Lu, WANG Dewen, HUANG Rong, DU Shiyu, HUANG Qing
Journal of Inorganic Materials    2021, 36 (1): 95-100.   DOI: 10.15541/jim20190564
Abstract527)   HTML12)    PDF(pc) (1272KB)(917)       Save

An electron irradiation induced fast phase-separation behavior was observed under convention Transmission electron microscopy (TEM) observation of spark plasma sintered AlF3 doped alumina ceramic. Spherical nanocrystalline Al precipitates separated out from original alumina grain surface within several seconds under transmission electron microscopy electron irradiation. By high resolution TEM observation combined with diffraction patterns analysis, it was found that the original alumina grain surface was in highly defected state. After electron irradiation under TEM, the defects on original alumina surface vanished accompanied by the precipitation of nanocrystalline Al particles. By thoroughly analysis of the defect reaction during doping process and the feature of cation sub-lattice of alumina, a defect assisted interstitial atom segregation mechanism was proposed to explain this behavior. According to this mechanism, doped F ions first occupied oxygen vacancy sites with corresponding Al ions at intrinsic interstitial sites. After oxygen vacancies being fully occupied, both F and Al ions tended to settle down at intrinsic octahedron interstitial sites, which resulted in a metastable doping state. Under the act of 1/3 [11ˉ00] partial dislocation of alumina matrix, distorted cation sub-lattice generated double aggregated vacant octahedron sites. When these doublets vacant octahedron sites were occupied by foreign Al ions, stacking faults composed of about three sequences were generated as that observed in high resolution TEM. Meanwhile, the segregated doping Al ions at double aggregated octahedron sites along the stacking faults worked as early stage precipitations. Under electron irradiation, with the ablation of F ions, the unstable segregated Al ions separated out as nano precipitation with the reconstruction of alumina lattice.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Recent Progress and Prospects of Ternary Layered Carbides/Nitrides MAX Phases and Their Derived Two-dimensional Nanolaminates MXenes
LI Mian, HUANG Qing
Journal of Inorganic Materials    2020, 35 (1): 1-7.   DOI: 10.15541/jim20190560
Abstract2578)   HTML177)    PDF(pc) (6216KB)(2669)       Save

In recent years, ternary layered carbide/nitride MAX phases and their derived two-dimensional nanolaminates MXenes have attracted extensive attention. The crystal structure of MAX phase is composed of Mn+1Xn unit interleaved with layers of A element. MAX phases combine good properties of metal and ceramic, which makes them promising candidates for high temperature structural materials, friction and wear devices, nuclear structural materials, etc. When etching the A-layer atoms of the MAX phase, the two-dimensional nanolaminates with the composition of Mn+1XnTx (Tx is surface termination), i.e. MXene, is obtained. MXenes have wide range of composition, and tunable physical and chemical properties, which endow them great potential in the applications of energy storage devices, electromagnetic shielding materials, and electronic devices, etc. In this paper, the research progress of MAX phase and MXene was introduced in terms of composition and structure, synthesis methods, and properties and application. Furthermore, the research prospects of this large family of materials were discussed.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cited: CSCD(6)
Review on Metastable Phase Diagrams: Application Roles in Specialty Ceramic Coatings
HUANG Ye-Yan, XU Kai, WU Bo, LI Peng, CHANG Ke-Ke, HUANG Feng, HUANG Qing
Journal of Inorganic Materials    2020, 35 (1): 19-28.   DOI: 10.15541/jim20190272
Abstract1198)   HTML25)    PDF(pc) (951KB)(1085)       Save

Phase diagrams, also known as equilibrium phase diagrams, serve as a road map for materials design. However, preparation process of coatings (such as Physical Vapor Deposition, PVD) is generally far from equilibrium and results in metastable phases. Thus, the CALPHAD (Calculation of Phase Diagrams) approach faces a challenge in calculating the metastable phase diagrams for PVD coating materials. Here we summarized the development of the modeling methodology for the metastable phase diagrams, where the model with critical surface diffusion distance established in recent years were highlighted. The CALPHAD approach, first-principles calculations coupled with high-throughput magnetron sputtering experiments were used to model the atomic surface diffusion, while only one key combinatorial experiment was performed to obtain the basic data for the computation, and the calculated metastable phase diagrams were confirmed by further experiments. Therefore, the database of the stable and metastable phase diagrams can be established, which will be used to guide the design of the ceramic coating materials by the relationship of composition, processing, microstructure, and performance. This model can also help to achieve the goal to shorten the time and reduce the costs of materials research and development.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cited: CSCD(1)
Phase Diagrams of Novel MAX Phases
CHEN Lei-Lei, DENG Zi-Xuan, LI Mian, LI Peng, CHANG Ke-Ke, HUANG Feng, DU Shi-Yu, HUANG Qing
Journal of Inorganic Materials    2020, 35 (1): 35-40.   DOI: 10.15541/jim20190184
Abstract1420)   HTML62)    PDF(pc) (2658KB)(1665)       Save

Phase diagrams are used as an indicator to estimate the thermodynamic stabilities of the novel MAX phases (Ti3AuC2, Ti3IrC2, Ti3ZnC2, Ti2ZnC). The phase diagrams of the Ti-Au-C, Ti-Ir-C, and Ti-Zn-C systems were obtained using the CALPHAD (Calculation of Phase Diagrams) approach coupled with ab initio calculations. The calculated results confirmed thermodynamic stabilities of the synthesized Ti3AuC2, Ti3IrC2, Ti3ZnC2, and Ti2ZnC MAX phases, which is in great agreement with the experiment information. The present work shows a systematic method to calculate the thermodynamic stability of the novel MAX phases, which can be used as guidance to synthesize more undiscovered MAX phases.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Design of the Nature-inspired Algorithms Library and Its Significance for New Materials Research and Development
DU Shi-Yu, ZHANG Yi-Ming, LUO Kan, HUANG Qing
Journal of Inorganic Materials    2019, 34 (1): 27-36.   DOI: 10.15541/jim20180214
Abstract868)   HTML19)    PDF(pc) (1769KB)(1492)       Save

The technique for Materials Genetic Initiative (MGI) is the key tool for realizing the demand-oriented design of new materials assisted by the artificial intelligence (AI). Accordingly, the development and application of innovative intelligence algorithms are particularly important. Based on the generalization and analyses of the existing nature-inspired algorithms, this work aims at outlining the suggestion to build the nature-inspired algorithms library (NIAL). The potential route in which inspirations are obtained from varieties of disciplines, was used to produce new algorithms in high-throughput ways is introduced. The general procedure for building algorithm library is elaborated, while its advantages and characteristics are anatomized. Finally, the potential of NIAL in new materials development has been envisioned to enhance the standard for the application of AI including MGI.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Synthesis of Novel MAX Phase Ti3ZnC2 via A-site-element-substitution Approach
LI Mian, LI You-Bing, LUO Kan, LU Jun, EKLUND Per, PERSSON Per, ROSEN Johanna, HULTMAN Lars, DU Shi-Yu, HUANG Zheng-Ren, HUANG Qing
Journal of Inorganic Materials    2019, 34 (1): 60-64.   DOI: 10.15541/jim20180377
Abstract1741)   HTML66)    PDF(pc) (8397KB)(2478)       Save

Using Ti3AlC2 as the precursor, a new MAX phase Ti3ZnC2 was synthesized via an A-elemental substitution reaction in a molten salts bath. Composition and crystal structure of Ti3ZnC2 were confirmed by XRD, SEM and TEM analysis. Its structure stability and lattice parameter of Ti3ZnC2 were further proved by a theoretical calculation based on density function theory (DFT). Moreover, thermodynamics of A-elemental substitution reactions based on Fe, Co, Ni, and Cu were investigated. All results indicated that the similar substitution reactions are feasible to form series of MAX phases whose A sites are Fe, Co, Ni, and Cu elements. The substitution reaction was achieved by diffusion of Zn atoms into A-layers of Ti3AlC2, which requires Al-Zn eutectic formation at high temperatures. The molten salts provided a moderate environment for substitution reaction and accelerated reaction dynamics. The major advantage of this substitution reaction is that MAX phase keeps individual metal carbide layers intact, thus the formation of competitive phases, such as MA alloys, was avoided. The proposed A-elemental substitution reactions approach opens a new door to design and synthesize novel MAX phases which could not be synthesized by the traditional methods.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cited: CSCD(1)
Enzyme-MXene Nanosheets: Fabrication and Application in Electrochemical Detection of H2O2
MA Bao-Kai, LI Mian, CHEONG Ling-Zhi, WENG Xin-Chu, SHEN Cai, HUANG Qing
Journal of Inorganic Materials    2020, 35 (1): 131-138.   DOI: 10.15541/jim20190139
Abstract1593)   HTML61)    PDF(pc) (4781KB)(1727)       Save

Two-dimensional MXene nanosheets with vertical junction structure was employed for easy immobilization of horse radish peroxidase enzymes to fabricate the electrochemical hydrogen peroxide (H2O2) biosensor. The synthesized MXene nanosheets exhibited large specific area, excellent electronic conductivity and good dispersion in aqueous phase. Horse Radish Peroxidase (HRP) enzymes molecules immobilized on MXene/chitosan/GCE electrode demonstrated good electrocatalytic activity toward reduction of H2O2. The fabricated HRP@MXene/chitosan/GCE biosensor exhibited a wide linear range from 5 to 1650 μmol?L -1, a limit of detection of 0.74 μmol?L -1 and good operation stability. The fabricated biosensor was successfully employed for detection of trace level of H2O2 in both solid and liquid food.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cited: CSCD(1)
Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene
LIU Guo-Quan, JIANG Xiao-Juan, ZHOU Jie, LI You-Bing, BAI Xiao-Jing, CHEN Ke, HUANG Qing, DU Shi-Yu
Journal of Inorganic Materials    2019, 34 (7): 775-780.   DOI: 10.15541/jim20180441
Abstract938)   HTML35)    PDF(pc) (2237KB)(1272)       Save

In this work, Mo, Y, Al, and C were used as raw materials to synthesize a novel (Mo2/3Y1/3)2AlC MAX phase by spark plasma sintering (SPS) at 1550 ℃, and the corresponding accordion-like MXene was successfully obtained with a milder chemical etching method. The chemical composition and microstructure of the materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (DES). The final product was Mo1.33CT2 MXene with functional groups on the surface. At the same time, the electronic structure and electronic properties of the novel (Mo2/3Y1/3)2AlC MAX phase and the corresponding Mo1.33CT2 MXene were studied by the first-principles density functional theory. The calculated results show that all of them exhibit metallic properties, which are expected to be applied for energy storage, biosensors and electrocatalysis.

Table and Figures | Reference | Related Articles | Metrics | Comments0
First-principles Study on Electronic and Magnetic Properties of Mn-doped Strontium Ferrite SrFe12O19
WANG Zhong, ZHA Xian-Hu, WU Ze, HUANG Qing, DU Shi-Yu
Journal of Inorganic Materials    2019, 34 (10): 1047-1054.   DOI: 10.15541/jim20190003
Abstract1066)   HTML22)    PDF(pc) (9191KB)(868)       Save

To reveal influence of doping ions on the magnetic properties of strontium ferrite materials with magnetoplumbite configurations, we studied the stable configurations and magnetic structures of strontium ferrite with and without manganese doping. The results show that the strontium ferrite is ferrimagnetic, which is consistent with the previous reports. Comparing the GGA and GGA+U approaches, the U value exhibits a significant impact on the electronic structures and atomic magnetic moments. When 3.7 eV is adopted for U value, the system changed from a metal to a semiconductor with a spin up band gap of 1.71 eV. The total magnetic moment of the pure strontium ferrite is 40 μB. For the SrFe12-xMnxO19 system, the site preference of Mn substituting Fe is investigated with x=0.5 and x=1.0. When x = 0.5, the single doping Mn atom preferentially occupies the Fe (12k) site. For x=1.0, the two Mn atoms preferentially occupy the Fe (12k) and Fe (2a) sites, respectively. Doping Mn has little impact on the lattice structure of strontium ferrite, but have a significant effect on the total magnetic moments and electronic structures. When x=0.5 and x=1.0, the band gap values for spin up electrons reduced to 0.85 and 0.49 eV, and the total magnetic moments reduced to 39 and 38 μB, respectively. This study may provide a theoretical foundation for future experimental studies.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cited: CSCD(4)