 
 Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (10): 1200-1206.DOI: 10.15541/jim20230072
Special Issue: 【结构材料】核用陶瓷(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													GU Junyi1,2( ), FAN Wugang1, ZHANG Zhaoquan1(
), FAN Wugang1, ZHANG Zhaoquan1( ), YAO Qin1(
), YAO Qin1( ), ZHAN Hongquan2
), ZHAN Hongquan2
												  
						
						
						
					
				
Received:2022-02-13
															
							
																	Revised:2023-03-29
															
							
															
							
																	Published:2023-10-20
															
							
																	Online:2023-06-01
															
						Contact:
								ZHANG Zhaoquan, professor. E-mail: zhangzq@mail.sic.ac.cn;About author:GU Junyi (1997-), male, Master candidate. E-mail: 2020028013@stu.jci.edu.cn				
													Supported by:CLC Number:
GU Junyi, FAN Wugang, ZHANG Zhaoquan, YAO Qin, ZHAN Hongquan. Preparation and Thermal Property of PrAlO3 Ceramics[J]. Journal of Inorganic Materials, 2023, 38(10): 1200-1206.
 
																													Fig. 5 SEM images of (a-d) areal surface and (a′-d′) fractural surface of T4 samples sintered at different temperatures (a, a′) 1430 ℃; (b, b′) 1460 ℃; (c, c′) 1500 ℃; (d, d′) 1600 ℃
| Sintering temperature/℃ | Bending strength/MPa | Fracture toughness/(MPa·m1/2) | Vickers hardness/GPa | Average grain size/μm | 
|---|---|---|---|---|
| 1500 | 88.47±4.14 | 0.81±0.02 | 7.95±0.43 | 5.51±1.84 | 
| 1600 | 95.55±4.62 | 0.92±0.06 | 7.75±0.28 | 15.40±5.02 | 
Table 1 Mechanical property of PrAlO3 prepared at different sintering temperatures
| Sintering temperature/℃ | Bending strength/MPa | Fracture toughness/(MPa·m1/2) | Vickers hardness/GPa | Average grain size/μm | 
|---|---|---|---|---|
| 1500 | 88.47±4.14 | 0.81±0.02 | 7.95±0.43 | 5.51±1.84 | 
| 1600 | 95.55±4.62 | 0.92±0.06 | 7.75±0.28 | 15.40±5.02 | 
 
																													Fig. 7 Thermophysical property of sample T4 sintered at different temperatures (a) Thermal expansion coefficient; (b) Thermal diffusivity; (c) Specific heat capacity; (d) Thermal conductivity
| Material | Density/ (g·cm-3) | Thermal expansion coefficient/ (×10-6, K-1) | Thermal conductivity/ (W·m-1·K-1) | 
|---|---|---|---|
| PrAlO3 | 6.69 | 9.3 | 5.0 | 
| GdAlO3[ | 6.64 | 4.8±0.2 | 3.5±0.1 | 
| Tb2TiO5[ | 6.89 | 6.8±0.2 | 1.3±0.1 | 
| B4C[ | 2.25 | 3.7±0.1 | 9.8±0.1 | 
| Ag-In-Cd[ | 10.18 | 22.5 (25~500 ℃) | 92.0±1.0 | 
Table 2 Thermal expansion coefficient and thermal conductivity parameters of different control rods at 360 ℃
| Material | Density/ (g·cm-3) | Thermal expansion coefficient/ (×10-6, K-1) | Thermal conductivity/ (W·m-1·K-1) | 
|---|---|---|---|
| PrAlO3 | 6.69 | 9.3 | 5.0 | 
| GdAlO3[ | 6.64 | 4.8±0.2 | 3.5±0.1 | 
| Tb2TiO5[ | 6.89 | 6.8±0.2 | 1.3±0.1 | 
| B4C[ | 2.25 | 3.7±0.1 | 9.8±0.1 | 
| Ag-In-Cd[ | 10.18 | 22.5 (25~500 ℃) | 92.0±1.0 | 
| [1] | HWANG J, RAO R R, GIORDANO L,  et al. Perovskites in catalysis and electrocatalysis. Science, 2017,  358(6364): 751. DOI PMID | 
| [2] | BOZTOSUN I, ĐAPO H, KARAKOÇ M. Measuring decay of praseodymium isotopes activated by a clinical LINAC. Modern Physics Letters A, 2016,  31(36): 1650212. DOI URL | 
| [3] | WADUGE W L I, CHEN Y, ZUO P,  et al. Solid-phase epitaxy of perovskite high dielectric PrAlO3 films grown by atomic layer deposition for use in two-dimensional electronics and memory devices. ACS Applied Nano Materials, 2019,  2(11): 7449. DOI URL | 
| [4] | EMERY A A, WOLVERTON C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Scientific Data, 2017, 4: 170153. | 
| [5] | COHEN E, RISBERG L A, NORDLAND W A,  et al. Structural phase transitions in PrAlO3. Physical Review, 1969,  186(2): 476. DOI URL | 
| [6] | HARLEY R T, HAYES W, PERRY A M,  et al. The phase transitions of PrAlO3. Journal of Physics C: Solid State Physics, 1973,  6(14): 2382. DOI URL | 
| [7] | HARLEY R T. Mechanism of 118.5 K phase transition in PrAlO3. Journal of Physics C: Solid State Physics, 1977,  10(8): L205. DOI URL | 
| [8] | HOWARD C J, KENNEDY B J, CHAKOUMAKOS B C. Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition. Journal of Physics- Condensed Matter, 2000,  12(4): 349. DOI URL | 
| [9] | MOUSSA S M, KENNEDY B J, HUNTER B A, et al. Low temperature structural studies on PrAlO3. Journal of Physics- Condensed Matter, 2001, 13(9): L203. | 
| [10] | PAWLAK D A, LUKASIEWICZ T, CARPENTER M,  et al. Czochralski crystal growth, microstructure and spectroscopic properties of PrAlO3 perovskite. Journal of Crystal Growth, 2005,  282(1/2): 260. DOI URL | 
| [11] | NOVOSELOV A, YOSHIKAWA A, SOLOVIEVA N,  et al. Crystal growth, optical and luminescence properties of (Ce,Sr)-doped PrAlO3 single crystals. Crystal Research and Technology, 2007,  42(12): 1320. DOI URL | 
| [12] | WENCKA M, VRTNIK S, JAGODIC M,  et al. Observation of anomalous magnetism in the low-temperature monoclinic phase of single-crystalline PrAlO3 perovskite. Physical Review B, 2009,  80(22): 224410. DOI URL | 
| [13] | SHRIVASTAVA V, NAGARAJAN R. Consequences of Bi3+ introduction for Pr3+ in PrAlO3. Journal of Materials Science, 2020,  55(32): 15415. DOI | 
| [14] | KIM C H, CHO S Y, KIM I T,  et al. Twin structures in lanthanum, praseodymium, and neodymium aluminate ceramics. Materials Research Bulletin, 2001,  36(9): 1561. DOI URL | 
| [15] | GAZULLA M F, VENTURA M J, ANDREU C, et al. Praseodymium oxides. complete characterization by determining oxygen content. Microchemical Journal, 2019, 148: 291. | 
| [16] | FU S, YANG Z C, LI H H,  et al. Effects of Gd2O3 and MgSiN2 sintering additives on the thermal conductivity and mechanical properties of Si3N4 ceramics. International Journal of Applied Ceramic Technology, 2023,  20(3): 1855. DOI URL | 
| [17] | CHEN C, YI X Z, ZHANG S,  et al. Vacuum sintering of Tb3Al5O12 transparent ceramics with combined TEOS+MgO sintering aids. Ceramics International, 2015,  41(10): 12823. DOI URL | 
| [18] | JIA W T, WEI Q L, ZHANG H B,  et al. Comparative analyses of the influence of tetraethoxysilane additives on the sintering kinetics of Nd:YAG transparent ceramics. Journal of Materials Science-Materials in Electronics, 2021,  32(14): 19218. DOI | 
| [19] | TONG H Z, WANG N L, ZOU Y Q,  et al. Densification and mechanical properties of YAG ceramics fabricated by air pressureless sintering. Journal of Electronic Materials, 2019,  48(1): 374. DOI | 
| [20] | KINSMAN K M, MCKITTRICK J. Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAG:Cr) phosphors. Journal of the American Ceramic Society, 1994,  77(11): 2866. DOI URL | 
| [21] | KLEMM H. Silicon nitride for high-temperature applications. Journal of the American Ceramic Society, 2010,  93(6): 1501. DOI URL | 
| [22] | ZHANG Y N. Co-precipitation Synthesis of Yb:YAG Nano-powders and Fabrication of Yb:YAG Transparent Ceramics. Shenyang: Master's Thesis of Northeastern University, 2015. | 
| [23] | STEVENSON A J, LI X, MARTINEZ M A,  et al. Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics. Journal of the American Ceramic Society, 2011,  94(5): 1380. DOI URL | 
| [24] | KOLITSCH U, SEIFERT H J, LUDWIG T,  et al. Phase equilibria and crystal chemistry in the Y2O3-Al2O3-SiO2 system. Journal of Materials Research, 1999,  14(2): 447. DOI URL | 
| [25] | LU G Z, SUN X D. Phase transformation, sintering and microstructures of transparent YAG ceramics doping TEOS. Chinese Journal of Nonferrous Metals, 2010, 20(6): 1220. | 
| [26] | XU G. Sintering Additives in Transparent Nd:YAG Ceramics in the Role and Performance Characterization. Xi'an: Master's Thesis of Xidian University, 2014. | 
| [27] | KUZJUKĒVIČS A, ISHIZAKI K. Sintering of silicon nitride with YAIO3 additive. Journal of the American Ceramic Society, 1993,  76(9): 2373. DOI URL | 
| [28] | YANG Q Y, QIU P F, SHI X,  et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021,  36(4): 347. DOI | 
| [29] | GUO X, FENG Y R, ZHAO J X,  et al. Neutron adsorption performance of Dy2TiO5 materials obtained from powders synthesized by the molten salt method. Ceramics International, 2017,  43(2): 1975. DOI URL | 
| [30] | AGENCY I. Absorber materials, control rods and designs of shutdown systems for advanced liquid metal fast reactors. Proceeding of a Technical Committee Meeting, 1996: 169. | 
| [31] | KIM H S, JOUNG C Y, LEE B H,  et al. Characteristics of GdxMyOz (M=Ti, Zr or Al) as a burnable absorber. Journal of Nuclear Materials, 2008,  372(2/3): 340. DOI URL | 
| [32] | HUANG J H, RAN G, LIU T J,  et al. Microstructure and physical properties of Tb2TiO5 neutron absorber synthesized by ball milling and sintering. Journal of Materials Engineering and Performance, 2016,  25(10): 4266. DOI URL | 
| [33] | SU X P, DU A B, HAN X H, et al. Study on thermophysical properties of B4C pellets used as control material in fast reactor. Shandong Ceramics, 2015, 38(4): 3. | 
| [34] | RUDY J M K. Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2020, 7: 533. | 
| [35] | XIAO H X, LONG C S. Effect of Sn Addition to Ag-In-Cd Alloy on the Microstructure and Thermo-physical Properties. 2013 Annual Conference of Chinese Nuclear Society, Harbin, 2013: 302-305. | 
| [36] | GU J Y, FAN W G, ZHANG Z Q,  et al. Structure and optical property of Pr2O3 powder prepared by reduction. Journal of Inorganic Materials, 2023,  38(7): 771. DOI URL | 
| [37] | ZHANG Q Y, HUANG X Y. Recent progress in quantum cutting phosphors. Progress in Materials Science, 2010,  55(5): 353. DOI URL | 
| [1] | CAI An,XIE Hua-Qing,XI Tong-Geng. Thermophysical Properties of Eleven Thermal Control Materials Related to Processing Conditions and Microstructure for Spacecraft [J]. Journal of Inorganic Materials, 2006, 21(5): 1173-1178. | 
| [2] | ZHOU Zong-Hui,DU Pi-Yi,WENG Wen-Jian,HAN Gao-Rong,SHEN Ge. Formation and Properties of the BSTN Composite Ceramics with Perovskite and Tungsten Bronze Phases [J]. Journal of Inorganic Materials, 2004, 19(6): 1322-1328. | 
| [3] | CUI Bin,TIAN Chang-Sheng,SHI Qi-Zhen. 0.80Pb(Mg1/3Nb2/3)O3-0.20PbTiO3 Ceramics Prepared by Semichemical Method [J]. Journal of Inorganic Materials, 2004, 19(6): 1313-1321. | 
| [4] | CUI Bin,YANG Zu-Pei,HOU Yu-Dong,SHI Qi-Zhen,TIAN Chang-Sheng. Reaction Mechanism of 0.80Pb(Mg1/3Nb2/3)O3 -0.20PbTiO3 Ceramics Prepared by Semichemical Method [J]. Journal of Inorganic Materials, 2002, 17(4): 737-744. | 
| [5] | XI Tonggeng,WANG Shengmei,ZHANG Zhongde,LU Yanjing,LI Minghua. A Prediction and Optimization of Thermophysical Properties for High temperature Thermal Insulation Materials [J]. Journal of Inorganic Materials, 1997, 12(2): 207-210. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||