 
 Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1270-1276.DOI: 10.15541/jim20210146
Special Issue: 【信息功能】纪念殷之文先生诞辰105周年虚拟学术专辑
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													DONG Chang1,2( ), LIANG Ruihong1,3(
), LIANG Ruihong1,3( ), ZHOU Zhiyong1,3, DONG Xianlin1,3
), ZHOU Zhiyong1,3, DONG Xianlin1,3
												  
						
						
						
					
				
Received:2021-03-11
															
							
																	Revised:2021-04-22
															
							
															
							
																	Published:2021-12-20
															
							
																	Online:2021-06-10
															
						Contact:
								LIANG Ruihong, professor. E-mail: liangruihong@mail.sic.ac.cn     
													About author:DONG Chang (1997-), male, Master candidate. E-mail: cdong@mail.ustc.edu.cn				
													Supported by:CLC Number:
DONG Chang, LIANG Ruihong, ZHOU Zhiyong, DONG Xianlin. Piezoelectric Property of PZT-based Relaxor-ferroelectric Ceramics Enhanced by Sm Doping[J]. Journal of Inorganic Materials, 2021, 36(12): 1270-1276.
 
																													Fig. 1 Surface and cross sectional SEM images and grain size distributions of ySm-0.25PMN-0.75PZT ceramics (a) y=0; (b) y=0.4%; (c) y=0.8%; (d) y=1.2%
 
																													Fig. 4 Temperature dependence of dielectric constant and dielectric loss of ySm-0.25PMN-0.75PZT ceramics (a) y=0, (b) y=0.4%, (c) y=0.8%, (d) y=1.2% @100 Hz-1 MHz; (e) y=0, 0.4%, 0.8%, 1.2%@1 kHz
| y | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | tanδ | Ec/(kV·mm-1) | Pr/(μC·cm-2) | Tc@1kHz/℃ | kp | kt | k33 | 
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 543 | 24.8 | 2475 | 0.028 | 0.77 | 42.5 | 199 | 0.58 | 0.41 | 0.67 | 
| 0.4% | 824 | 27.1 | 3434 | 0.032 | 0.80 | 38.7 | 178 | 0.67 | 0.52 | 0.77 | 
| 0.8% | 678 | 20.5 | 3744 | 0.039 | 0.88 | 27.2 | 156 | 0.59 | 0.46 | 0.70 | 
| 1.2% | 522 | 13.9 | 4239 | 0.041 | 0.76 | 24.9 | 144 | 0.43 | 0.33 | 0.52 | 
Table 1 Comprehensive property of ySm-0.25PMN-0.75PZT ceramics
| y | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | tanδ | Ec/(kV·mm-1) | Pr/(μC·cm-2) | Tc@1kHz/℃ | kp | kt | k33 | 
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 543 | 24.8 | 2475 | 0.028 | 0.77 | 42.5 | 199 | 0.58 | 0.41 | 0.67 | 
| 0.4% | 824 | 27.1 | 3434 | 0.032 | 0.80 | 38.7 | 178 | 0.67 | 0.52 | 0.77 | 
| 0.8% | 678 | 20.5 | 3744 | 0.039 | 0.88 | 27.2 | 156 | 0.59 | 0.46 | 0.70 | 
| 1.2% | 522 | 13.9 | 4239 | 0.041 | 0.76 | 24.9 | 144 | 0.43 | 0.33 | 0.52 | 
| Ceramic | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | Tc@1kHz/℃ | Ref. | 
|---|---|---|---|---|---|
| Sm-PMN-PT | 1510 | 13.1 | 13000 | 89 | [ | 
| PMN-PT | 663 | 14.2 | 5260 | 159 | [ | 
| PZT5H | 590 | 19.6 | 3400 | 193 | [ | 
| 0.4%Sm-0.25PMN-0.75PZT | 824 | 27.1 | 3434 | 177 | This work | 
Table 2 Comparison of properties between ceramics in this work and literature
| Ceramic | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | Tc@1kHz/℃ | Ref. | 
|---|---|---|---|---|---|
| Sm-PMN-PT | 1510 | 13.1 | 13000 | 89 | [ | 
| PMN-PT | 663 | 14.2 | 5260 | 159 | [ | 
| PZT5H | 590 | 19.6 | 3400 | 193 | [ | 
| 0.4%Sm-0.25PMN-0.75PZT | 824 | 27.1 | 3434 | 177 | This work | 
 
																													Fig. 7 Temperature dependence of properties for 0.4%Sm- 0.25PMN-0.75PZT ceramics (a) Piezoelectric coefficient, dielectric constant, residual polarization; (b) Field-induced longitudinal strain
| [1] | JAFFE B, COOK W R, JAFFE H. Piezoelectric Ceramics. London: Academic Press, 1971. | 
| [2] | KIM N, HUEBNER W, JANG S, et al. Dielectric and piezoelectric properties of lanthanum-modified lead magnesium niobium-lead titanate ceramics. Ferroelectrics, 1989, 93(1): 341-349. DOI URL | 
| [3] | TURNER R C, FUIERER P A, NEWNHAM R E, et al. Materials for high temperature acoustic and vibration sensors: a review. Applied Acoustics, 1994, 41(4): 299-324. DOI URL | 
| [4] | CROSS L E, NEWNHAM R E. History of ferroelectrics. Ceramics Civilization, 1987, 3: 289-305. | 
| [5] | DAMJANOVIC D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics, 1998, 61(9): 1267-1324. DOI URL | 
| [6] | ZHANG S, XIA R, SHROUT T R. Lead-free piezoelectric ceramics vs. PZT? Journal of Electroceramics, 2007, 19(4): 251-257. | 
| [7] | PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82(4): 1804-1811. DOI URL | 
| [8] | NOHEDA B, COX D E, SHIRANE G, et al. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Applied Physics Letters, 1999, 74(14): 2059-2061. DOI URL | 
| [9] | GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3. Physical Review Letters, 2000, 84(23): 5423-5426. DOI URL | 
| [10] | GENE H. Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 1999, 82(4): 797-818. DOI URL | 
| [11] | LI P, ZHAI J, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Advanced Materials, 2018, 30(8): 1705171. DOI URL | 
| [12] | DURSUN S, MENSU-RALKOY E, UNVER M U, et al. Enhancement of electrical properties in the ternary PMN-PT-PZ through compositional variation, crystallographic texture, and quenching. Journal of the American Ceramic Society, 2020, 103(4): 2499-2508. DOI URL | 
| [13] | LINES M E, GLASS A M. Principles and Applications of Ferroelectrics and Related Materials. Clarendon: Oxford University Press, 1977: 25-28. | 
| [14] | CHOI S W, SHROUT R T, JANG S J, et al. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics, 1989, 100(1): 29-38. DOI URL | 
| [15] | WEN K, QIU Q, JI H, et al. Investigation of phase diagram and electrical properties of xPb(Mg1/3Nb2/3)O3-(1-x)Pb(Zr0.4Ti0.6)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25(7): 3003-3009. DOI URL | 
| [16] | LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Materials, 2018, 17(4): 349-354. DOI URL | 
| [17] | GUO Q, HOU L, LI F, et al. Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3- PbTiO3 ceramics. Journal of the American Ceramics Society, 2019, 102(12): 7428-7435. DOI URL | 
| [18] | WANG L, LIANG R, MAO C, et al. Effect of PMN content on the phase structure and electrical properties of PMN-PZT ceramics. Ceramics International, 2013, 39(7): 8571-8574. DOI URL | 
| [19] | UDOMKAN N, LIMSUWAN, et al. Effect of rare-earth (RE=La, Nd, Ce and Gd) doping on the piezoelectric of PZT (52:48) ceramics. International Journal of Modern Physics B, 2007, 21(26): 4549-4559. DOI URL | 
| [20] | WANG H, JIANG B, SHROUT T R, et al. Electromechanical properties of fine-grain, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramics. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004, 51(7): 908-912. DOI URL | 
| [21] | CAO W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials. Journal of Physics & Chemistry of Solids, 1996, 57(10): 1499-1505. | 
| [22] | LEE H J, ZHANG S, LUO J, et al. Thickness-dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Advanced Functional Materials, 2010, 20(18): 3154-3162. DOI URL | 
| [23] | ZHANG S, LI F, JIANG X, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers- a review. Progress in Materials Science, 2015, 68: 1-66. DOI URL | 
| [24] | NOHEDA B, COX D E, SHIRANE G, et al. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Physical Review B, 2002, 66(5): 054104. DOI URL | 
| [25] | MISHRA S K, SINGH A P, DHANANJAI P. Thermodynamic nature of phase transitions in Pb(ZrxTi1-x)O3 ceramics near the morphotropic phase boundary: I. structural studies. Philosophical Magazine Part B, 1997, 76(2): 213-226. | 
| [26] | LI K, SUN E, ZHANG Y, et al. High piezoelectricity of Eu3+- doped Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramics. Journal of Materials Chemistry C, 2021, 9(7): 2426-2436 DOI URL | 
| [27] | LI F, ZHANG S, DAMJANOVIC D, et al. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Advanced Functional Materials, 2018, 28(37): 1801504 DOI URL | 
| [28] | CHEN J, CHAN H M, HARMER M P. Ordering structure and dielectric properties of undoped and La/Na-doped Pb(Mg1/3Nb2/3)O3. Journal of the American Ceramic Society, 1989, 72(4): 593-598. DOI URL | 
| [29] | HILCZER B. Influence of lattice-deffects on the properteis of ferroelectrics. Diffusionless Phase Transitions in Oxides and Some Reconstructive and Martensitic Phase Transitions, 1995, 101: 95-128. | 
| [30] | SMOLENSKII G A, ISUPOV V A, AGRANOVSKAYA A I, et al. Ferroelectrics with diffuse phase transitions. Soviet Physics-Solid State, 1961, 2(11): 2584-2594. | 
| [31] | SMOLENSKII G A. Physical phenomena in ferroelectrics with diffused phase transition. Journal of the Physical Society of Japan, 1970, 28(1): 26-37. | 
| [32] | LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nature Communications, 2016, 7: 13807. DOI URL | 
| [33] | BOKOV A A. Recent progress in relaxor ferroelectrics with perovskite structure. Journal of Material Science, 2006, 41(1): 31-52. DOI URL | 
| [34] | BERLINCOURT D. Piezoelectric Crystals and Ceramics. Boston, MA: Springer, 1971: 63-124. | 
| [35] | CROSS L E. Relaxor ferroelectrics. Ferroelectrics, 1987, 76(3/4): 241-276. DOI URL | 
| [36] | VIEHLAND D, JANG S J, CROSS L E, et al. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. Journal of Applied Physics, 1990, 68(6): 2916-2921. DOI URL | 
| [1] | CHEN Xiangjie, LI Ling, LEI Tianfu, WANG Jiajia, WANG Yaojin. Enhanced Piezoelectric Properties of (1-x)(0.8PZT-0.2PZN)-xBZT Ceramics via Phase Boundary and Domain Engineering [J]. Journal of Inorganic Materials, 2025, 40(6): 729-734. | 
| [2] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. | 
| [3] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. | 
| [4] | LIU Dingwei, ZENG Jiangtao, ZHENG Liaoying, MAN Zhenyong, RUAN Xuezheng, SHI Xue, LI Guorong. High Piezoelectric Property and Low Electric Field-strain Hysteresis of BiAlO3-doped PZT Ceramics [J]. Journal of Inorganic Materials, 2022, 37(12): 1365-1370. | 
| [5] | NIE Heng-Chang, WANG Yong-Ling, HE Hong-Liang, WANG Gen-Shui, DONG Xian-Lin. Recent Progress of Porous PZT95/5 Ferroelectric Ceramics [J]. Journal of Inorganic Materials, 2018, 33(2): 153-161. | 
| [6] | YU Yao, WANG Xu-Sheng, LI Yan-Xia, YAO Xi. Effect of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics [J]. Journal of Inorganic Materials, 2015, 30(2): 219-224. | 
| [7] | ZENG Tao, BAI Yang, SHEN Xi-Xun, WANG Bao-Feng, DONG Xian-Lin, ZHOU Zhi-Yong. Investigation on the Mechanical and Ferroelectric Properties of the Porous PZT 95/5 Ceramics [J]. Journal of Inorganic Materials, 2014, 29(7): 758-762. | 
| [8] | LAN Chun-Feng1, NIE Heng-Chang1, CHEN Xue-Feng, WANG Jun-Xia, WANG Gen-Shui, DONG Xian-Lin, LIU Yu-Sheng, HE Hong-Liang. Research on Low-temperature Phase Structures and Electrical Properties of Dense PZT 95/5 Ferroelectric Ceramics [J]. Journal of Inorganic Materials, 2013, 28(5): 502-506. | 
| [9] | ZHU Kong-Jun, ZHU Ren-Qiang, DONG Na-Na, GU Hong-Hui, QIU Jin-Hao, JI Hong-Li. PZT Powders Synthesized by Hydrothermal Method [J]. Journal of Inorganic Materials, 2012, 27(5): 507-512. | 
| [10] | DENG Qi-Huang, WANG Lian-Jun, WANG Hong-Zhi, JIANG Wan. Evaluation of Fatigue of the Lead Zirconate Titanate Ceramics under Electro-mechanical Coupling Field [J]. Journal of Inorganic Materials, 2012, 27(4): 358-362. | 
| [11] | LU Jian-Ping, LI Guo-Rong, ZHENG Liao-Ying, ZENG Jiang-Tao, ZENG Hua-Rong, BIAN Jian-Jiang. Investigation of PNN-PZT Thick Films Fabricated by Electrophoretic Deposition [J]. Journal of Inorganic Materials, 2012, 27(4): 379-384. | 
| [12] | DENG Qi-Huang, WANG Lian-Jun, XU Hong-Jie, WANG Hong-Zhi, JIANG Wan. Fatigue Life Investigation of PZT Ceramics by MSP Method [J]. Journal of Inorganic Materials, 2012, 27(10): 1047-1052. | 
| [13] | CAI Kun-Peng, SUN Jing-Bo, LI Bo2, ZHOU Ji. Direct Write Assembly of Three-dimensional PZT Woodpile Structure [J]. Journal of Inorganic Materials, 2011, 26(5): 495-498. | 
| [14] | ZHOU Yang,CHENG Chun-Sheng,ZHAO Jing-Wei,ZHENG Hong-Fang,ZHAO Qing-Xun,PENG Ying-Cai,LIU Bao-Ting. Investigation of Structural and Physical Properties of Pt/Pb(Zr 0.4 Ti 0.6 )O3/ITO Capacitors Fabricated on Glass Substrate [J]. Journal of Inorganic Materials, 2010, 25(3): 242-246. | 
| [15] | CAO Rui-Juan,LI Guo-Rong,ZHAO Su-Chuan,ZENG Jiang-Tao,ZHENG Liao-Ying,YIN Qing-Rui. Electrophoretic Deposition and the Electrical Properties of the PNN-PZT Thick Films [J]. Journal of Inorganic Materials, 2009, 24(6): 1183-1188. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||