Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (11): 1223-1230.DOI: 10.15541/jim20210142
• RESEARCH LETTER • Previous Articles Next Articles
LI Pengpeng(), WANG Bing(
), WANG Yingde(
)
Received:
2021-03-10
Revised:
2021-04-10
Published:
2021-11-20
Online:
2021-04-30
Contact:
WANG Yingde, professor. E-mail: wangyingde@nudt.edu.cn;WANG Bing, associate professor. E-mail: bingwang@nudt.edu.cn
About author:
LI Pengpeng(1995-), male, Master candidate. E-mail: lipengpeng@nudt.edu.cn
Supported by:
CLC Number:
LI Pengpeng, WANG Bing, WANG Yingde. Ultrafast CO Sensor Based on Flame-annealed Porous CeO2 Nanosheets for Environmental Application[J]. Journal of Inorganic Materials, 2021, 36(11): 1223-1230.
Material | Concentration/(μL∙L-1) | Temperature/℃ | Sensitivity | (Response/recovery time)/s | Ref. |
---|---|---|---|---|---|
Co3O4 nanostructures | 5 | 100 | 2.4a | 14/36 | [23] |
Pd/SnO2 | 100 | 100 | 3.5a | 60/150 | [24] |
TiO2-CeO2 mixed oxides | 400 | 200 | 10.7a | 32/45 | [25] |
SnO2/MoO2 | 100 | RT | 9.2%b | 20/16 | [1] |
SnO2-CeO2 mixed oxides | 500 | 430 | 190%b | 26/30 | [11] |
Pd/SnO2 nanowires | 200 | 400 | 6.8a | 5/40 | [26] |
ZnO nanorods | 30 | 400 | 1.1a | 46/27 | [27] |
Porous CeO2 nanosheets | 500 | 450 | 12.0%b | 2/2 | This work |
Material | Concentration/(μL∙L-1) | Temperature/℃ | Sensitivity | (Response/recovery time)/s | Ref. |
---|---|---|---|---|---|
Co3O4 nanostructures | 5 | 100 | 2.4a | 14/36 | [23] |
Pd/SnO2 | 100 | 100 | 3.5a | 60/150 | [24] |
TiO2-CeO2 mixed oxides | 400 | 200 | 10.7a | 32/45 | [25] |
SnO2/MoO2 | 100 | RT | 9.2%b | 20/16 | [1] |
SnO2-CeO2 mixed oxides | 500 | 430 | 190%b | 26/30 | [11] |
Pd/SnO2 nanowires | 200 | 400 | 6.8a | 5/40 | [26] |
ZnO nanorods | 30 | 400 | 1.1a | 46/27 | [27] |
Porous CeO2 nanosheets | 500 | 450 | 12.0%b | 2/2 | This work |
OS/% | OV/% | Ce3+/% | Ce3+/Ce4+ | |
---|---|---|---|---|
CeO2-0.5min NSs | 19.0 | 40.0 | 26.3 | 0.357 |
CeO2-2min NSs | 14.8 | 43.2 | 28.6 | 0.401 |
CeO2-5min NSs | 15.1 | 42.7 | 23.8 | 0.312 |
OS/% | OV/% | Ce3+/% | Ce3+/Ce4+ | |
---|---|---|---|---|
CeO2-0.5min NSs | 19.0 | 40.0 | 26.3 | 0.357 |
CeO2-2min NSs | 14.8 | 43.2 | 28.6 | 0.401 |
CeO2-5min NSs | 15.1 | 42.7 | 23.8 | 0.312 |
Surface area/(m2∙g-1) | Pore volume/ (cm3∙g-1) | Average pore diameter/nm | |
---|---|---|---|
CeO2-0.5min NSs | 73.344 | 0.172 | 10.1 |
CeO2-2min NSs | 46.804 | 0.181 | 15.5 |
CeO2-5min NSs | 40.836 | 0.163 | 15.8 |
Surface area/(m2∙g-1) | Pore volume/ (cm3∙g-1) | Average pore diameter/nm | |
---|---|---|---|
CeO2-0.5min NSs | 73.344 | 0.172 | 10.1 |
CeO2-2min NSs | 46.804 | 0.181 | 15.5 |
CeO2-5min NSs | 40.836 | 0.163 | 15.8 |
[1] |
YANG Z, ZHANG D, WANG D. Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sensors and Actuators B: Chemical, 2019, 304:127369.
DOI URL |
[2] |
BASU A K, CHAUHAN P S, AWASTHI M, et al. α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. Applied Surface Science, 2019, 465:56-66.
DOI URL |
[3] | WHO. WHO Air Quality Guidelines-Global Update 2005. World Health Organization, Copenhagen, 2006. |
[4] |
YANG S, JIANG C, WEI S H. Gas sensing in 2D materials. Applied Physics Reviews, 2017, 4(2):021304.
DOI URL |
[5] |
DEY A. Semiconductor metal oxide gas sensors: a review. Materials Science and Engineering: B, 2018, 229:206-217.
DOI URL |
[6] |
MAHAJAN S, JAGTAP S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review. Applied Materials Today, 2020, 18:100483.
DOI URL |
[7] |
GOVARDHAN K, GRACE A N. Metal/Metal oxide doped semiconductor based metal oxide gas sensors-a review. Sensor Letters, 2016, 14:741-750.
DOI URL |
[8] | SUN C, LI H, CHEN L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy & Environmental Science, 2012, 5(9):8475-8505. |
[9] |
LIU Y, LEI Y. Pt-CeO2 nanofibers based high-frequency impedancemetric gas sensor for selective CO and C3H8 detection in high- temperature harsh environment. Sensors and Actuators B: Chemical, 2013, 188:1141-1147.
DOI URL |
[10] |
MAJUMDER D, ROY S. Development of low-ppm CO sensors using pristine CeO2 nanospheres with high surface area. ACS Omega, 2018, 3(4):4433-4440.
DOI URL |
[11] |
DURRANI S M, AL-KUHAILI M F, BAKHTIARI I A, et al. Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films. Sensors (Basel), 2012, 12(3):2598-2609.
DOI URL |
[12] |
LIU X, MA T, PINNA N, et al. Two-dimensional nanostructured materials for gas sensing. Advanced Functional Materials, 2017, 27(37):1702168.
DOI URL |
[13] |
LIU F, WANG X, CHEN X, et al. Porous ZnO ultrathin nanosheets with high specific surface areas and abundant oxygen vacancies for acetylacetone gas sensing. ACS Applied Materials Interfaces, 2019, 11(27):24757-24763.
DOI URL |
[14] |
MIAO J, CHEN C, MENG L, et al. Self-assembled monolayer of metal oxide nanosheet and structure and gas-sensing property relationship. ACS Sensors, 2019, 4(5):1279-1290.
DOI URL |
[15] |
CHOI P G, IZU N, SHIRAHATA N, et al. SnO2 nanosheets for selective alkene gas sensing. ACS Applied Nano Materials, 2019, 2(4):1820-1827.
DOI URL |
[16] |
LI P, WANG B, QIN C, et al. Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors. Ceramics International, 2020, 46(11):19232-19240.
DOI URL |
[17] |
LI P, WANG B, LI W, et al. Effect of annealing atmosphere with different oxygen concentration on CO gas sensing performances for CeO2 nanoparticles. Materials Letters, 2021, 284:129000.
DOI URL |
[18] |
SAMERJAI T, CHANNEI D, KHANTA C, et al. Flame-spray- made ZnInO alloyed nanoparticles for NO2 gas sensing. Journal of Alloys and Compounds, 2016, 680:711-721.
DOI URL |
[19] | YUAN H, ALJNEIBI S, YUAN J, et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Advanced Materials, 2019, 31(11):e1807161. |
[20] |
ZHAO H, DONG Y, JIANG P, et al. Highly dispersed CeO2 on TiO2 nanotube: a synergistic nanocomposite with superior peroxidase-like activity. ACS Applied Materials Interfaces, 2015, 7(12):6451-6461.
DOI URL |
[21] |
DENG C, HUANG Q, ZHU X, et al. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO+CO model reaction. Applied Surface Science, 2016, 389:1033-1049.
DOI URL |
[22] |
YAO L, LI Y, RAN Y, et al. Construction of novel Pd-SnO2 composite nanoporous structure as a high-response sensor for methane gas. Journal of Alloys and Compounds, 2020, 826:154063.
DOI URL |
[23] |
BUSACCA C, DONATO A, LO FARO M, et al. CO gas sensing performance of electrospun Co3O4 nanostructures at low operating temperature. Sensors and Actuators B: Chemical, 2020, 303:127193.
DOI URL |
[24] |
WANG Q, WANG C, SUN H, et al. Microwave assisted synthesis of hierarchical Pd/SnO2 nanostructures for CO gas sensor. Sensors and Actuators B: Chemical, 2016, 222:257-263.
DOI URL |
[25] |
MOHAMMADI M R, FRAY D J. Nanostructured TiO2-CeO2 mixed oxides by an aqueous Sol-Gel process: effect of Ce:Ti molar ratio on physical and sensing properties. Sensors and Actuators B: Chemical, 2010, 150(2):631-640.
DOI URL |
[26] |
TRUNG DO D, HOA N D, TONG P V, et al. Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. Journal of Hazard Materials, 2014, 265:124-132.
DOI URL |
[27] |
KHOANG N D, HONG H S, TRUNG D D, et al. On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sensors and Actuators B: Chemical, 2013, 181:529-536.
DOI URL |
[28] |
QIN C, WANG B, WU N,et al. Metal-organic frameworks derived porous Co3O4 dodecahedeons with abundant active Co3+ for ppb- level CO gas sensing. Applied Surface Science, 2020, 506:144900.
DOI URL |
[29] |
XU J M, CHENG J P. The advances of Co3O4 as gas sensing materials: a review. Journal of Alloys and Compounds, 2016, 686:753-768.
DOI URL |
[30] |
YAN F, SHEN G, YANG X, et al. Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor. Applied Surface Science, 2019,479:1141-1147.
DOI URL |
[31] | WANG Z, YU R. Hollow micro/nanostructured ceria-based materials: synthetic strategies and versatile applications. Advanced Materials, 2019,31(38):e1800592. |
[1] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[2] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
[3] | HU Hao, JIANG Xiang-Ping, CHEN Chao, NIE Xin, HUANG Xiao-Kun, SU Chun-Yang. Influence of Ce 3+ Substitution on the Structure and Electrical Characteristics of Bismuth-layer Na0.5Bi8.5Ti7O27 Ceramics [J]. Journal of Inorganic Materials, 2019, 34(9): 997-1003. |
[4] | LI Jin, LIU Ting-Yu, YAO Shu-An, FU Ming-Xue, LU Xiao-Xiao. First Principles Study on the Property of O Vacancy in LuPO4 Crystal [J]. Journal of Inorganic Materials, 2019, 34(8): 879-884. |
[5] | LIANG Ji-Ran, ZHANG Ye, YANG Ran, ZHAO Yi-Rui, GUO Jin-Bang. Room-temperature NH3 Gas Sensing Property of VO2(B)/ZnO Hierarchical Heterogeneous Composite with Nanorod Structure [J]. Journal of Inorganic Materials, 2018, 33(12): 1323-1329. |
[6] | CUI Lei, YANG Li-Juan, WANG Fan, XIA Wei-Wei. Fabrication of Flower-like Sn3O4 Hollow Microspheres and Their Photocatalytic Activity [J]. Journal of Inorganic Materials, 2016, 31(5): 461-465. |
[7] | CAO Xiao-Xin, CHEN Yi-Lin, LIN Bi-Zhou, GAO Bi-Fen. Study of the Photocatalytic Performance of Oxygen-deficient TiO2 Active in Visible Light [J]. Journal of Inorganic Materials, 2012, 27(12): 1301-1305. |
[8] | ZHOU Zhi-Gang,TANG Zi-Long. Point Defects and Applications of Chemical Sensors Ceramics [J]. Journal of Inorganic Materials, 2009, 24(4): 650-660. |
[9] | FU Jun,DONG Ming-You. Study on the Effects of Film Thickness on the Gas-Sensing Properties of SnO2 Thick Film Sensors [J]. Journal of Inorganic Materials, 2001, 16(6): 1255-1258. |
[10] | HE Lian-Xing,LI Cheng-En,CHEN Ting-Guo,LIU Wei,ZHU Zen-Gang,SHUI Jia-Peng. Low-Frequency internal Friction of Lead Metaniobate Ceramics [J]. Journal of Inorganic Materials, 2000, 15(5): 827-932. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||