 
 Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (4): 431-435.DOI: 10.15541/jim20200380
Special Issue: 能源材料论文精选(2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【虚拟专辑】超级电容器(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
					
													GUO Meng( ), ZHANG Fengnian, MIAO Yang(
), ZHANG Fengnian, MIAO Yang( ), LIU Yufeng, YU Jun, GAO Feng
), LIU Yufeng, YU Jun, GAO Feng
												  
						
						
						
					
				
Received:2020-07-07
															
							
																	Revised:2020-10-23
															
							
															
							
																	Published:2021-04-20
															
							
																	Online:2020-11-05
															
						Contact:
								MIAO Yang, associate professor. E-mail: miaoyang@tyut.edu.cn     
													About author:GUO Meng(1997-), male, Master candidate. E-mail: 18235120868@163.com				
													Supported by:CLC Number:
GUO Meng, ZHANG Fengnian, MIAO Yang, LIU Yufeng, YU Jun, GAO Feng. Preparation and Electrical Properties of High Entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Perovskite Ceramics Powder[J]. Journal of Inorganic Materials, 2021, 36(4): 431-435.
| Sample | La | Co | Cr | Fe | Mn | Ni | 
|---|---|---|---|---|---|---|
| La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 | 5 | 1 | 1 | 1 | 1 | 1 | 
| La(Cr0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Mn0.25)O3 | 4 4 4 4 4 | No 1 1 1 1 | 1 No 1 1 1 | 1 1 No 1 1 | 1 1 1 No 1 | 1 1 1 1 No | 
Table 1 Molar ratios of each element component of the six samples
| Sample | La | Co | Cr | Fe | Mn | Ni | 
|---|---|---|---|---|---|---|
| La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 | 5 | 1 | 1 | 1 | 1 | 1 | 
| La(Cr0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Fe0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Mn0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Ni0.25)O3 La(Co0.25Cr0.25Fe0.25Mn0.25)O3 | 4 4 4 4 4 | No 1 1 1 1 | 1 No 1 1 1 | 1 1 No 1 1 | 1 1 1 No 1 | 1 1 1 1 No | 
 
																													Fig. 4 SEM image of sample La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 calcined at 800 ℃ (a), SEM image (b) and corresponding EDS element mapping (c-g) of La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 calcined at 1000 ℃
| [1] | TSAI M H, YEH J W. High-entropy alloys: a critical review. Materials Research Letters, 2014,2(3):107-123. | 
| [2] | MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017,122:448-511. | 
| [3] | HUO W Y, ZHOU H, FANG F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Materials & Design, 2017,134:226-233. | 
| [4] | ABHISHEK S, QINGSONG W, ALEXANDER S, et al. High entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 2019,31(26):1806236-1-9. | 
| [5] | ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015 , 6:8485. | 
| [6] | ELINOR C, CSANADI TAMAS, SALVATORE G, et al. Processing and properties of high-entropy ultra-high temperature carbides. Scientific Reports, 2018,8(1):8609. DOI URL PMID | 
| [7] | GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 2016,6(1):37946. | 
| [8] | POGREBNJAK A D, BAGDASARYAN A A, YAKUSHCHENKO I V, et al. The structure and properties of high-entropy alloys and nitride coatings based on them. Russian Chemical Reviews, 2014,83(11):1027-1061. | 
| [9] | ZHANG R Z, GUCCI F, ZHU H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 2018,57(20):13027-3033. DOI URL PMID | 
| [10] | BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24) : 9536-541. | 
| [11] | CHEN H, QIU N, WU B Z, et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties. RSC Advances, 2019,9(50):28908-28915. | 
| [12] | BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi, 2016,10(4):328-333. | 
| [13] | ZHANG J J, YAN J Q, CALDER S, et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chemistry of Materials, 2019,31(10):3705-3711. | 
| [14] | CHEN H, FU J, ZHANG P F, et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 2018,6(24):11129-11133. | 
| [15] | CHEN H, LIN W W, ZHANG Z H, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Materials Letters, 2019,1(1):83-88. | 
| [16] | SARKAR A, LOHO C, VELASCO L, et al. Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency. Dalton Transactions, 2017,46(36):12167-12176. DOI URL | 
| [17] | GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides. Journal of the European Ceramic Society, 2018,38(10):3578-3584. DOI URL | 
| [18] | WANG D, JIANG S D, DUAN C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. Journal of Alloys and Compounds, 2020,844:156158. DOI URL | 
| [19] | MAO A Q, QUAN F, XIANG H Z, et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 2019,1194:11-18. DOI URL | 
| [20] | WANG J B, STENZEL D, AZMI R, et al. Spinel to rock-salt transformation in high entropy oxides with Li incorporation. Electrochem, 2020,1(1):60-74. DOI URL | 
| [21] | LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582. DOI URL | 
| [22] | CHEN H, ZHAO Z F, XIANG H M, et al. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: a novel high temperature stable thermal barrier material. Journal of Materials Science & Technology, 2020,48:57-62. | 
| [23] | JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120. DOI URL | 
| [24] | SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018,38(5):2318-2327. DOI URL | 
| [25] | IRFAN S, AJAZUNNABI M, JAMIL Y, et al. Synthesis of Mn1-xZnxFe2O4 ferrite powder by co-precipitation method. IOP Conference Series: Materials Science and Engineering, 2014,60:12048. DOI URL | 
| [26] | MASASHI, KOTOBUKI, MASAKI, et al. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method. Ionics, 2013,19(12):1945-1948. DOI URL | 
| [27] | ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 2020,46(6):7430-7437. DOI URL | 
| [28] | ZHAO S H, YANG Z B, ZHAO X M. Green preparation and supercapacitive performance of NiCo2S4@ACF heterogeneous electrode materials. Journal of Inorganic Materials, 2019,34(2):130-136. DOI URL | 
| [29] | TAO K Y, LI P Y, KANG L T, et al. Facile and low-cost combustion-synthesized amorphous mesoporous NiO/carbon as high mass-loading pseudocapacitor materials. Journal of Power Sources, 2015,293:23-32. DOI URL | 
| [30] | MA X J, KONG L B, ZHANG W B, et al. Design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 2014,130:660-669. DOI URL | 
| [31] | ZHOU R, HAN C J, WANG X M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. Journal of Power Sources, 2017,352:99-110. DOI URL | 
| [32] | HUO H H, ZHAO Y Q, XU C L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. Journal of Materials Chemistry A, 2014,2(36):15111-15117. DOI URL | 
| [33] | ZHANG L X, ZHENG W H, JIU H F, et al. The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochimica Acta, 2016,215:212-222. | 
| [34] | ZHANG G X, CHEN Y M, HE Z N, et al. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance. Journal of Inorganic Materials, 2018,33(3):289-294. | 
| [1] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. | 
| [2] | WEI Zhi-Guo, LU Xin, TONG Jian-Bo, PAN Yu, WANG Guo-Qing, QU Xuan-Hui. Preparation and Discharge Performance of Porous VB2 Anodes for High Capacity VB2-air Battery [J]. Journal of Inorganic Materials, 2017, 32(2): 122-126. | 
| [3] | MENG Fang-Li, ZHANG Dong-Yun, CHANG Cheng-Kang, XU Jia-Yue, KAMZIN A S. Synthesis and Electrochemical Performance of LiFePO4/C Cathode Materials Using Fe Powder [J]. Journal of Inorganic Materials, 2016, 31(8): 802-806. | 
| [4] | LIU Jian-Rui,WANG Meng,YIN Da-Chuan,HUANG Wei-Dong. Low-temperature Synthesis of LiV3O8 as Cathode Material for Rechargeable Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2002, 17(3): 617-620. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||