| [1] | XU H M, LIU W, CAO L X , et al. Preparation of porous TiO2/ZnO composite film and its photocathodic protection properties for 304 stainless steel. Appl. Surf. Sci., 2014,301(10):508-514. | 
																													
																							| [2] | BU Y, AO J P . A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy & Environ., 2017,2(4):331-362. | 
																													
																							| [3] | LI Q, LI X, WAGEH S , et al. CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015,5(14):1-28. | 
																													
																							| [4] | FU X L, WU Z P, LEI M , et al. A facile route to silver-cadmium sulfide core-shell nanoparticles and their nonlinear optical properties. Mate. Lett., 2013,104(3):76-79. | 
																													
																							| [5] | IJAZ S, EHSAN M F, ASHIQ M N , et al. Preparation of CdS@CeO2 core/shell composite for photocatalytic reduction of CO2 under visible-light irradiation. Appl. Surf. Sci., 2016,390:550-559. | 
																													
																							| [6] | MA S, XIE J, WEN J Q , et al. Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl. Surf. Sci., 2017,391:580-591. | 
																													
																							| [7] | YAO L L, GU J J, WANG W Q , et al. Ce4+ as a facile and versatile surface modification reagent for templated synthesis in electrical applications. Nanoscale , 2019,11:2138-2142. | 
																													
																							| [8] | YU J G, JIN J, CHENG B , et al. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A, 2014,2(10):3407-3416. | 
																													
																							| [9] | FENG Y, YAN X, LIU C B , et al. Hydrothermal synthesis of CdS/Bi2MoO6 heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance. Appl. Surf. Sci., 2015,353:87-94. | 
																													
																							| [10] | CHAUDHARY Y S, PANIGRAHI S, NAYAK S , et al. Facile synthesis of ultra-small monodisperse ceria nanocrystals at room temperature and their catalytic activity under visible light. J. Mater. Chem., 2010,20(12):2381-2385. | 
																													
																							| [11] | SUBASRI R, DESHPANDE S, SEAL S , et al. Evaluation of the performance of TiO-CeO bilayer coatings as photoanodes for corrosion protection of copper. Electrochem. Solid S L, 2006,9(1):B1-B4. | 
																													
																							| [12] | ZHANG P, LIU Y, TIAN B Z , et al. Synthesis of core-shell structured CdS@CeO2 and CdS@TiO2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Cataly. Today, 2017,281:181-188. | 
																													
																							| [13] | FANG J, XU L, ZHANG Z Y , et al. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation. ACS Appl. Mater. Inter., 2013,5(16):8088-8092. | 
																													
																							| [14] | PAL P, SINGHA R K, SAHA A , et al. Defect-induced efficient partial oxidation of methane over nonstoichiometric Ni/CeO2 nanocrystals. J. Phys. Chem. C, 2015,119(24):13610-13618. | 
																													
																							| [15] | ZHAO H X, CUI S, YANG L , et al. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity. J. Colloid Interf. Sci, 2018,512:47-54. | 
																													
																							| [16] | GUO X Q, LIU W, CAO L X , et al. Graphene incorporated nanocrystalline TiO2 films for the photocathodic protection of 304 stainless steel. Appl. Surf. Sci., 2013,283(11):498-504. | 
																													
																							| [17] | ZHANG T T, LIU Y, LIANG J , et al. Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Appl. Surf. Sci., 2017,394:440-445. | 
																													
																							| [18] | HU J, GUAN Z C, LIANG Y , et al. Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection. Corros Sci, 2017,125:59-67. | 
																													
																							| [19] | REN J F, QIAN B, LI J , et al. Highly efficient polypyrrole sensitized TiO2 nanotube films for photocathodic protection of Q235 carbon steel. Corros. Sci., 2016,111:596-601. | 
																													
																							| [20] | HU J, LIU Q, ZHANG H , et al. Facile ultrasonic deposition of SnO2 nanoparticles on TiO2 nanotube films for enhanced photoelectrochemical performances. J. Mater. Chem. A, 2015,3(45):22605-22613. | 
																													
																							| [21] | TATSUMA T, SAITOH S, OHKO Y , et al. TiO2-WO3 Photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mater., 2001,13(9):2838-2842. |