Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (8): 839-844.DOI: 10.15541/jim20170540
Special Issue: 环境材料优选论文
• Orginal Article • Previous Articles Next Articles
KE Yin-Huan, ZENG Min, JIANG Hong, XIONG Chun-Rong
Received:
2017-11-14
Revised:
2018-01-14
Published:
2018-08-28
Online:
2018-07-17
About author:
KE Yin-Huan. E-mail: 947127452@qq.com
CLC Number:
KE Yin-Huan, ZENG Min, JIANG Hong, XIONG Chun-Rong. Photocatalytic Reduction of Carbon Dioxide to Methanol over N-doped TiO2 Nanofibers under Visible Irradiation[J]. Journal of Inorganic Materials, 2018, 33(8): 839-844.
Cell parameters | TiO2 | N-TiO2 |
---|---|---|
a | 3.7820 | 3.7851 |
c | 9.5021 | 9.5140 |
Table 1 Crystal cell parameters of TiO2 and N-TiO2 nanofibers
Cell parameters | TiO2 | N-TiO2 |
---|---|---|
a | 3.7820 | 3.7851 |
c | 9.5021 | 9.5140 |
[1] | AURIAN-BLAJENI B, HALMANN M, MANASSEN J,et al. Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials.Solar Energy, 1980, 25(2): 165-170. |
[2] | MATSUMOTO Y, OBATA M, HOMBO J,et al. Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder.Journal of Physical Chemistry, 1994, 98(11): 2950-2951. |
[3] | HUSSAIN S T, KHAN K, HUSSAIN R,et al. Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles, its optical property and its photo catalytic reactivity for CO2+H2O conversion and phenol degradation.Journal of Energy Chenistry, 2009, 18(4): 383-391. |
[4] | TSAI C W, CHEN H M, LIU R S,et al. Ni@NiO core-shell structure-modified nitrogen-doped in TaO4 for solar-driven highly efficient CO2 reduction to methanol.J. Phys. Chem. C, 2011, 115(20): 10180-10186. |
[5] | GUAN G, KIDA T, HARADA T,et al. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight.Applied Catalysis A General, 2003, 249(1): 11-18. |
[6] | SLAMET H W, NASUTION E, PURNAMA K,et al. Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts.World Applied Sciences Journal, 2009, 6(1): 112-122. |
[7] | SLAMET, NASUTION H W, PURNAMA E,et al. Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method.Catalysis Communications, 2005, 6(5): 313-319. |
[8] | ZHANG ZONG-WEI, FAN JUN.Effects of the photocatalytic activity of nano TiO2 doped with Tb. Petrochemical Technology. 2007, 36(9): 956-960. |
[9] | YANG M C, YANG T S, WONG M S,et al.Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films., 2004, 469-470: 1-5. |
[10] | NONAMI T, HASE H, FUNAKOSHIK,et al. Apatite-coated titanium dioxide photocatalyst for air purification.Catal. Today, 2004, 96(3): 113-118. |
[11] | KESHMIRI M, MOHSENI M, TROCZYNSKI T,et al. Development of novel TiO2, Sol-Gel-derived composite and its photocatalytic activities for trichloroethylene oxidation.Applied Catalysis B Environmental, 2004, 53(4): 209-219. |
[12] | WANG YAN, YANG JIAN JUN.Study on the Origin of Nitrogen- doped TiO2 Visible Light Activity. National Conference on Solar Photochemistry and Photocatlysis. 2010. |
[13] | ZHAO Z, FAN J, XIE M,et al.Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. Journal of Cleaner Production, 2009, 17(11): 1025-1029. |
[14] | GAO S, GU B, JIAO X,et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. Journal of the American Chemical Society, 2017, 139(9): 3438-3445. |
[15] | FORMO E, LEE E, CAMPBELL D,et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications.Nano Letters, 2008, 8(2): 668-672. |
[16] | CHENG Y, HUANG W, ZHANG Y,et al. Preparation of TiO2 hollow nanofibers by electrospining combined with Sol-Gel process. Crystengcomm, 2010, 12(7): 2256-2260. |
[17] | CAO T, LI Y, WANG C,et al. A facil. in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011, 27(6): 2946-2952. |
[18] | LI X, LIU H, LUO D,et al. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2, nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation.Chemical Engineering Journal, 2012, 180(6): 151-158. |
[19] | HAMIDAH, ABDULLAH, MAKSUDUR,et al. CeO2-TiO2 as a visible light active catalyst for the photoreduction of CO2 to methanol.Journal of Rare Earths, 2015, 33(11): 1155-1161. |
[20] | LI H, ZHU L, MA C,et al. TiO2, hollow microspheres: synthesis, photocatalytic activity, and selectivity for a mixture of organic dyes.Monatshefte für Chemie-Chemical Monthly, 2014, 145(1): 29-37. |
[21] | 徐伟. N-TiO2光催化剂的制备及其中孔炭负载研究. 上海: 华东理工大学硕士学位论文, 2013. |
[22] | MOHAMED M A,SALLEH W N W, JAAFAR J,et al. Structural characterization of N-doped anatase-rutile mixed phase TiO2, nanorods assembled microspheres synthesized by simple Sol-Gel method.Journal of Sol-Gel Science and Technology, 2015, 74(2): 513-520. |
[23] | SAYED F N, JAYAKUMAR O D, SASIKALA R,et al. Photochemical hydrogen generation using nitrogen-doped TiO2-Pd nanoparticles: facile synthesis and effect of Ti3+ incorporation.Journal of Physical Chemistry C, 2012, 116(23): 12462-12467. |
[24] | YANG X, CAO C, ERICKSON L,et al. Synthesis of visible- light-active TiO2 based photocatalysts by carbon and nitrogen doping. Journal of Catalysis, 2008, 260(1): 128-133. |
[25] | 王岩. 可见光活性二氧化钛的制备及氧空位与掺杂的N(或修饰的金属)之间的协同作用机制研究. 郑州: 河南大学博士学位论文, 2012. |
[26] | 秦好丽. 氮掺杂二氧化钛的制备及可见光下对有机物的降解研究. 广州: 华南理工大学博士学位论文, 2006. |
[27] | VALENTIN C D, FINAZZI E, PACCHIONI G,et al. N-doped TiO2: theory and experiment.Chemical Physics, 2007, 339(1/2/3): 44-56. |
[28] | CAO YU-HUI, YAN YU-FEI, ZHANG JIAN,et al. Infrared assisted microwave preparation. of grahitephase carbon nitride and photo catalytic nitrogen firation performace.Chemical Journal of Chinese Universities, 2016, 37(7): 1357-1363. |
[29] | WU X, ZHAO J, WANG L,et al. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Applied Catalysis B Environmental, 2017, 206: 501-509. |
[1] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[2] | SHI Tong, GAN Qiaowei, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Boost Electrochemical Reduction of CO2 to Formate Using a Self-supporting Bi@Cu Nanotree Electrode [J]. Journal of Inorganic Materials, 2024, 39(7): 810-818. |
[3] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[4] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[5] | JIA Xin, LI Jinyu, DING Shihao, SHEN Qianqian, JIA Husheng, XUE Jinbo. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301-1308. |
[6] | LI Chengjin, XUE Yi, ZHOU Xiaoxia, CHEN Hangrong. BiZnx/Si Photocathode: Preparation and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2022, 37(10): 1093-1101. |
[7] | GAO Wa, XIONG Yujie, WU Congping, ZHOU Yong, ZOU Zhigang. Recent Progress on Photocatalytic CO2 Reduction with Ultrathin Nanostructures [J]. Journal of Inorganic Materials, 2022, 37(1): 3-14. |
[8] | GUO Lina, HE Xuebing, LYU Lin, WU Dan, YUAN Hong. Modulation of CuO Surface Properties for Selective Electrocatalytic Reduction of CO2 to HCOOH [J]. Journal of Inorganic Materials, 2022, 37(1): 29-37. |
[9] | DONG Zhengming, LI Xiu, CHEN Chen, CAO Minghe, YI Zhiguo. Photostriction of NBT-BNT Ceramics [J]. Journal of Inorganic Materials, 2021, 36(3): 277-282. |
[10] | ZHANG Qingming, ZHU Min, ZHOU Xiaoxia. CuO/ZnO Composite Electrocatalyst: Preparation and Reduction of CO2 to Syngas [J]. Journal of Inorganic Materials, 2021, 36(11): 1145-1153. |
[11] | LIU Qiang, DING Jie, JI Guojing, HU Juanmin, GU Hao, ZHONG Qin. Fe-Co-K/ZrO2 Catalytic Performance of CO2 Hydrogenation to Light Olefins [J]. Journal of Inorganic Materials, 2021, 36(10): 1053-1058. |
[12] | Li Cuixia, SUN Huizhen, JIN Haize, SHI Xiao, LI Wensheng, KONG Wenhui. Construction and Photocatalytic Performance of 3D Hierarchical Pore rGO/TiO2 Composites [J]. Journal of Inorganic Materials, 2021, 36(10): 1039-1046. |
[13] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
[14] | ZHANG Dongqiang, LU Huihui, SU Na, LI Guixian, JI Dong, ZHAO Xinhong. Modulation of SAPO-34 Property with Activated Seeds and Its Enhanced Lifetime in Methanol to Olefins Reaction [J]. Journal of Inorganic Materials, 2021, 36(1): 101-106. |
[15] | ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure [J]. Journal of Inorganic Materials, 2020, 35(9): 993-998. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||