Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (2): 206-212.DOI: 10.15541/jim20170365
Special Issue: 电催化研究
• Orginal Article • Previous Articles Next Articles
ZHANG Xin1, ZHANG Jian-Feng1, YANG Shui-Xian1, CAO Hui-Yang1, HUANG Hua-Jie1, JIANG Wan2
Received:
2017-08-07
Revised:
2017-10-10
Published:
2018-02-26
Online:
2018-01-26
CLC Number:
ZHANG Xin, ZHANG Jian-Feng, YANG Shui-Xian, CAO Hui-Yang, HUANG Hua-Jie, JIANG Wan. Electrocatalytic Performance of Palladium Nanoparticle Supported by Two-dimensional Titanium Carbide-CNT Composites[J]. Journal of Inorganic Materials, 2018, 33(2): 206-212.
Fig. 5 Cyclic voltammetry curves of Pd/Ti3C2-CNT electrocatalysts in (a) 0.5 mol/L H2SO4 and (c) 0.5 mol/L NaOH at 50 mV/s. The corresponding ECSA values were shown in (c) and (d)
Fig. 6 Cyclic voltammetry curves of Pd/Ti3C2-CNT electrocatalysts in (a) 0.5 mol/L H2SO4+0.5 mol/L HCOOH and (c) 0.5 mol/L NaOH+1 mol/L CH3OH at 50 mV/s. The corresponding forward peak current densities were shown in (c) and (d)
Fig. 8 Chronoamperometric curves of Pd/Ti3C2-CNT electrocatalysts recorded in (a) 0.5 mol/L H2SO4+0.5 mol/L HCOOH and (b) 0.5 mol/L NaOH+1 mol/L CH3OH solutions
[1] | COSTAMAGNA P, SRINIVASAN S.Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. engineering, technology development and application aspects.J. Power Sources, 2001, 102(1): 253-269. |
[2] | DING D, LIU Z, LI L, et al.An octane-fueled low temperature solid oxide fuel cell with Ru-free anodes.Electrochem. Commun., 2008, 10(9): 1295-1298. |
[3] | QIU C, SHANG R, XIE Y, et al.Electrocatalytic activity of bimetallic Pd-Ni thin films towards the oxidation of methanol and ethanol.Mater. Chem. Phys., 2010, 120(2): 323-330. |
[4] | ZHANG X, ZHU J, TIWARY C S, et al.Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces, 2016, 8(17): 10858-10865. |
[5] | HUANG H, WANG X.Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells.J. Mater. Chem. A, 2014, 2(18): 6266-6291. |
[6] | HUANG Y X, XIE J F, ZHANG X, et al.Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities.ACS Appl. Mater. Interfaces, 2014, 6(18): 15795-15801. |
[7] | CHEN X, WU G, CHEN J, et al.Synthesis of "clean" and well- dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide.J. Am. Chem. Soc., 2011, 133(11): 3693-3695. |
[8] | NAGUIB M, KURTOGLU M, PRESSER V, et al.Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv. Mater., 2011, 23(37): 4207. |
[9] | ZHOU A, LI Z, LI L, et al.Preparation and microstructure of Ti3SiC2 bonded cubic boron nitride superhard composites.Journal of the Chinese Ceramic Society, 2014, 42(2): 220-224. |
[10] | TIAN B L.Transformation of WPA process from dehydrated into dehydrated-hemihydrates method.Phosphate Compound Fertilizer, 2010, 25(2): 31-32. |
[11] | MASHTALIR O, NAGUIB M, DYATKIN B, et al.Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys., 2013, 139(1): 147-152. |
[12] | WANG H B. ZHANG J F, WU Y P, et al.Achieving high-rate capacitance of multi-layer titanium carbide (MXene) by liquid-phase exfoliation through Li-intercalation.Electrochem. Commun., 2017, 81: 48-51. |
[13] | WANG H B, ZHANG J F, WU Y P, et al.Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination.Appl. Surf. Sci., 2016, 384: 287-293. |
[14] | YING Y, LIU Y, WANG X, et al.Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water.ACS Appl. Mater. Interfaces, 2015, 7(3): 1795-1803. |
[15] | ZOU H B, DONG X F, LIN W M.Potential applications of carbon nanotubes in battery industry.Battery Bimonthly, 2004, 34(2): 126-128. |
[16] | HE J B, CHEN C L, LIU J H.Study of multi-wall carbon nanotubes self-assembled electrode and its application to the determination of carbon monoxide.Sensor. Actuat. B-Chem., 2004, 99(1): 1-5. |
[17] | HU C G, WANG W L, LIAO K J, et al.Systematic investigation on the properties of carbon nanotube electrodes with different chemical treatments.J. Phys. Chem. Solids, 2004, 65(10): 1731-1736. |
[18] | YAO Y L, ZHANG D, XIA X H.Study on deposition mechanism of nanoparticles on carbon nanotube.Chinese J. Inorg. Chem., 2004, 20(5): 531-535. |
[19] | SUN X, LI R, VILLERS D, et al.Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings. Chem. Phys. Lett., 2003, 379(1): 99-104. |
[20] | XU C, WANG X, ZHU J.Graphene-metal particle nanocomposites.J. Phys. Chem. C, 2008, 112(50): 19841-19845. |
[21] | SINGH R N, SINGH A, ANINDITA. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions.Carbon, 2009, 47(1): 271-278. |
[22] | DONG Y, PANG H, YANG H B, et al.Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation- independent emission.Angew. Chem., 2013, 52(30): 7800-7804. |
[23] | PRIOLKAR K R, BERA P, SARODE P R, et al.Formation of Ce1-xPdxO2-δ solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation.Chem. Mater., 2002, 14(5): 2120-2128. |
[24] | YAMAMOTO S, BLUHM H, ANDERSSON K et al. In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions.J. Phys. Condens. Matter, 2008, 20(18): 1-14. |
[25] | WILHELMSSON O, PALMQUIST J P, LEWIN E, et al.Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering.J. Cryst. Growth, 2006, 291(1): 290-300. |
[26] | QIU J D, WANG G C, LIANG R P, et al.Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells.J. Phys. Chem. C, 2011, 115(31): 15639-15645. |
[27] | SUN Z P, ZHANG X G, LIANG Y Y, et al.Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution.J. Electrochemistry Communications, 2009, 11(3): 557-561. |
[28] | CUI Z, KULESZA P J, CHANG M L, et al.Pd nanoparticles supported on HPMo-PDDA-MWCNT and their activity for formic acid oxidation reaction of fuel cells.Int. J. Hydrogen Energ., 2011, 36(14): 8508-8517. |
[29] | SINGH R N, SINGH A, ANINDITA. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH.Int. J. Hydrogen Energ., 2009, 34(4): 2052-2057. |
[30] | QIN Y H, JIA Y B, JIANG Y, et al.Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation.Int. J. Hydrogen Energ., 2012, 37(9): 7373-7377. |
[1] | LI Ya-Hui, ZHANG Jian-Feng, CAO Hui-Yang, ZHANG Xin, JIANG Wan. PtRu Particles Supported on Two-dimensional Titanium Carbide/Carbon Nanotubes: Preparation and Electrocatalytic Properties [J]. Journal of Inorganic Materials, 2020, 35(1): 79-85. |
[2] | ZHAI Chun-Yang, SUN Ming-Juan, DU Yu-Kou, ZHU Ming-Shan. Noble Metal/Semiconductor Photoactivated Electrodes for Direct Methanol Fuel Cel [J]. Journal of Inorganic Materials, 2017, 32(9): 897-903. |
[3] | ZHANG Yi, ZHANG Xiao-Feng, He Xiao-Lei, HUANG Huo-Di, LE Li-Juan, LIN Shen. Preparation and Electrocatalytic Property of Pt/{GN/CuPW11}n Composite Films toward Methanol Oxidation [J]. Journal of Inorganic Materials, 2017, 32(10): 1075-1082. |
[4] | MA Bao-Lu, ZHANG Yue. Synthesis and Photocatalytic Activity of Carbon Nanotubes/Titanium Dioxide Nanocomposites [J]. Journal of Inorganic Materials, 2015, 30(9): 937-942. |
[5] | XU Ming-Li, DUAN Ben, ZHANG Ying-Jie, YANG Guo-Tao, DONG Peng, XIA Shu-Biao, YANG Xian-Wan. Effect of Modification Factors of MWCNTs Support on Electrocatalytic Performance of Pt Nanoparticles [J]. Journal of Inorganic Materials, 2015, 30(9): 931-936. |
[6] | LU Shao-Wei, LI Qian, XIONG Xu-Hai, MA Ke-Ming, XU Wei-Kai, JIA Cai-Xia. Microwave Abosrbing Properties of CNTs Composites Attached with Fe3O4/CNTs Hybrid Buckypaper [J]. Journal of Inorganic Materials, 2015, 30(1): 23-28. |
[7] | GUO Li-Ping, BAI Jie, LIANG Hai-Ou, LI Chun-Ping, SUN Wei-Yan, MENG Qing-Run. Preparation and Application of Carbon Nanofibers-supported Palladium Nanoparticles Catalysts Based on Electrospinning [J]. Journal of Inorganic Materials, 2014, 29(8): 814-820. |
[8] | LV Hui, CHEN Ai-Ping, SUN Xiu-Li, TANG Jun, LI Chun-Zhong. Synthesis of Graphene/Ni/TiO2/CNTs Composites and Photocatalytic Activities [J]. Journal of Inorganic Materials, 2014, 29(10): 1061-1066. |
[9] | WANG Liu-Ying, XU Zhuo, HUA Shao-Chun, LIU An-Min, GUO Qin, LIU Gu. Raman Spectroscopy and Microwave Absorbing Properties of CNTs/Al2O3-TiO2 Composite Absorbing Coatings with Different Diameters [J]. Journal of Inorganic Materials, 2013, 28(2): 136-140. |
[10] | HU Xian-Chao, HU Jian-Guan, SUN Jie, LI Guo-Hua. Mesoporous Tungsten Carbide Supported Pt and Their Electro Catalytic Activity for Methanol Electro-oxidation [J]. Journal of Inorganic Materials, 2013, 28(12): 1286-1290. |
[11] | WANG Zhi-Min, TANG Xin-Cun, XIAO Yuan-Hua, YU Xiao-Jing, ZHANG Liang, JIA Dian-Zeng, CHEN Gu-Chun. Polypyrrole Coated Carbon Nanotubes: Preparation, Characterization, and Gas-sensing Properties [J]. Journal of Inorganic Materials, 2011, 26(9): 961-968. |
[12] | CHEN Yi-Lin, CAO Xiao-Xin, LIN Bi-Zhou. Preparation and Property of Visible-light-driven InVO4/MWCNTs Photocatalyst for Benzene Decomposition [J]. Journal of Inorganic Materials, 2011, 26(5): 508-512. |
[13] | WANG Liu-Ying,, XU Zhuo, HUA Shao-Chun, LIU Gu. High Temperature Performanceof Micro-plasma Sprayed CNTs/ Al2O3-TiO2Composite Coating [J]. Journal of Inorganic Materials, 2011, 26(3): 239-243. |
[14] | ZHAO Xiao-Feng,JIANG Qi1,GUO Ya-Nan,ZHANG Nan,SHAN Chang-Xing,ZHAO Yong. Preparation of Carbon Nanotube / Polyaniline Composite by Organic Chemistry Synthesis [J]. Journal of Inorganic Materials, 2010, 25(1): 91-95. |
[15] | LIANG Tong-Xiang,ZHAO Hong-Sheng,ZHANG Yue. Electromagnetic Wave Absorption Properties of SiC Coated CNTs Nano-composites [J]. Journal of Inorganic Materials, 2006, 21(3): 659-663. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||