[1] |
HASHIM S S, MOHAMED A R, BHATIA S. Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew Sust. Energ. Rev., 2011, 15(2): 1284-1293.
|
[2] |
HONG J, CHAUDHRY G, BRISSON J G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy, 2009, 34: 1332-1340.
|
[3] |
JEE J G, KIM M B, LEE C H. Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve. Chem. Eng. Sci., 2005, 60: 869-882.
|
[4] |
MOGHTADERI B. Application of chemical looping concept for air separation at high temperatures. Energy Fuel, 2010, 24: 190-198.
|
[5] |
WANG K, YU Q, QIN Q. The thermodynamic method for selecting oxygen carriers used for chemical looping air separation. J. Therm. Anal. Calorim., 2013, 112(2): 747-753.
|
[6] |
MATTISSON T, JOHANSSON M, LYNGFELT A. The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel, 2006, 85(5/6):736-747.
|
[7] |
FOSSDAL A, BAKKEN E, OYE B A, et al. Study of inexpensive oxygen carriers for chemical looping combustion. Int. J. Greenhouse Gas Control, 2011, 5(3):483-488.
|
[8] |
SHEN L, ZHENG M, XIAO J, et al. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion. Combust Flame, 2008, 154(3):489-506.
|
[9] |
LIU S, LEE D, LIU M, et al. Selection and application of binders for CaSO4 oxygen carrier in chemical-looping combustion. Energy Fuels, 2010, 24(12): 6675-6681.
|
[10] |
LINDERHOLM C, ABAD A, MATTISSON T, et al. 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. Int. J. Greenhouse Gas Control, 2008, 2(4): 520-530.
|
[11] |
KOLBITSCH P, BOLHAR-NORDENKAMPF J, PROLL T, et al. Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation. Ind. Eng. Chem. Res., 2009, 48: 5542-5547.
|
[12] |
ADÁNEZ-RUBIO I, GAYÁN P, GARCÍA-LABIANO F, et al. Development of CuO-based oxygen-carrier materials suitable for chemical looping with oxygen uncoupling (CLOU) process. Energy Procedia, 2011, 4: 417-424.
|
[13] |
GAYÁN P, ADÁNEZ-RUBIO I, ABAD A, et al. Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process. Fuel, 2012, 96(1): 226-238.
|
[14] |
SHAH K, MOGHTADERI B, ZANGANEH J, et al. Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants. Fuel, 2013, 107: 356-370.
|
[15] |
SHAH K, MOGHTADERI B, WALL T. Effect of flue gas impurities on the performance of a chemical looping based air separation process for oxy-fuel combustion. Fuel, 2013, 103: 932-942.
|
[16] |
WANG KUN, YU QING-BO, XIE HUA-QING, et al. Properties of Cu-based oxygen carrier used for chemical looping oxygen production. Journal of Inorganic Materials, 2013, 28(10): 1115-1120.
|
[17] |
WANG K, YU Q B, QIN Q, et al. Feasibility study for copper/zirconium oxides as oxygen carrier in chemical looping air separation (CLAS). Advanced Materials Research, 2013, 683: 479-483.
|
[18] |
SAHIR A H, SOHN H Y, LEION H, et al. Rate analysis of chemical-looping with oxygen uncoupling (CLOU) for solid fuels. Energy Fuels, 2012, 26(7): 4395-4404.
|
[19] |
WANG KUN, YU QING-BO, QIN QIN, et al. Experimental study of chemical looping air separation technology using Cu-based oxygen carrier. Journal of Northeastern University (Natural Science), 2013, 34(1): 107-110.
|
[20] |
HOSSAIN M M, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations-a review. Chem. Eng. Sci., 2008, 63(18): 4433-4451.
|
[21] |
MATTISSON T, LEION H, LYNGFELT A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel, 2009, 88: 683-690.
|
[22] |
VYAZOVKINA S, BURNHAMB A K, CRIADOC J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta, 2011, 520(1/2): 1-19.
|
[23] |
STARINK M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta, 2003, 404(1/2): 163-176.
|
[24] |
GARCIA-LABIANO F, DE DIEGO L F, ADÁNEZ J, et al. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Ind. Eng. Chem. Res., 2004, 43(26): 8168-8177.
|
[25] |
LI P, YU Q B, QIN Q, et al. Adaptability of coal gasification in molten blast furnace slag on coal samples and granularities. Energy Fuels, 2011, 25(12): 5678-5682.
|
[26] |
DUAN YUN, LI JIE, LIU YU-WEN, et al. Kinetic analysis on the thermal decomposition of bagasse by iso-conversional method. Biomass Chemical Engineering, 2010, 44(5): 25-29.
|
[27] |
XU L, WANG J, LI Z S, et al. Experimental study of cement-supported CuO oxygen carriers in chemical looping with oxygen uncoupling (CLOU). Energy Fuels, 2013,27(3): 1522-1530.
|