Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (5): 521-526.DOI: 10.3724/SP.J.1077.2013.12368
• Orginal Article • Previous Articles Next Articles
LUO Hua-Ming, LIU Zhi-Yong, BAI Chuan-Yi, LU Yu-Ming, CAI Chuan-Bing
Received:
2012-06-03
Revised:
2012-09-03
Published:
2013-05-10
Online:
2013-04-22
About author:
LUO Hua-Ming. E-mail: luohuaminghao@163.com
Supported by:
CLC Number:
LUO Hua-Ming, LIU Zhi-Yong, BAI Chuan-Yi, LU Yu-Ming, CAI Chuan-Bing. TiO2 Nanotube Based Dye-sensitized Photoanode[J]. Journal of Inorganic Materials, 2013, 28(5): 521-526.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 XRD patterns of (a) Ti foil, (b, c) unannealed and 500℃annealed TiO2 nanotube on Ti foil, (d) detached TiO2 nanotubes and (e) TiO2 nanotubes on FTO substrate
Sample | Rct/Ω | Jsc/(mA∙cm-2) | Voc/V | η/% | FF/% |
---|---|---|---|---|---|
dsc-NP | 89.4 | 4.50 | 0.643 | 2.02 | 69.8 |
dsc-16.8 μm | 78.5 | 4.01 | 0.639 | 1.81 | 70.7 |
dsc-21.6 μm | 75.3 | 4.69 | 0.608 | 1.99 | 69.7 |
dsc-32.8 μm | 32.7 | 5.08 | 0.609 | 2.09 | 67.6 |
dsc-32.8-treated | 57.8 | 9.19 | 0.698 | 4.15 | 64.5 |
Table 1 Photovoltaic properties of dye-sensitized solar cells
Sample | Rct/Ω | Jsc/(mA∙cm-2) | Voc/V | η/% | FF/% |
---|---|---|---|---|---|
dsc-NP | 89.4 | 4.50 | 0.643 | 2.02 | 69.8 |
dsc-16.8 μm | 78.5 | 4.01 | 0.639 | 1.81 | 70.7 |
dsc-21.6 μm | 75.3 | 4.69 | 0.608 | 1.99 | 69.7 |
dsc-32.8 μm | 32.7 | 5.08 | 0.609 | 2.09 | 67.6 |
dsc-32.8-treated | 57.8 | 9.19 | 0.698 | 4.15 | 64.5 |
[1] | O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740. |
[2] | Yella Aswani, Lee Hsuan-Wei, Tsao Hoi Nok, et al. Porphyrin- sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency. Science, 2011, 334(6056): 629-634. |
[3] | Ito Seigo, Murakami Takurou N, Comte Pascal, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613-4619. |
[4] | Varghese Oomman K, Paulose Maggie, Grimes Craig A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnology, 2009, 4(9): 592-597. |
[5] | Kuang Daibin, Brillet Jeremie, Chen Peter, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano, 2008, 2(6): 1113-1116. |
[6] | Allam Nageh K, Shankar Karthik, Grimes Craig A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. Journal of Materials Chemistry, 2008, 18(20): 2341-2348. |
[7] | Kang Soon Hyung, Kim Hyun Sik, Kim Jae-Yup, et al. An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells. Nanotechnology, 2009, 20(35): 355307-1-6. |
[8] | Liu Zhaoyue, Zhang Xintong, Nishimoto Shunsuke, et al. Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. Journal of Physical Chemistry C, 2008, 112(1): 253-259. |
[9] | Li Hongyi, Wang Jinshu, Huang Kelin, et al. In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method. Materials Letters, 2011, 6 5(8): 1188-1190. |
[10] | Raja K S, Gandhi T, Misra M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications, 2007, 9(5): 1069-1076. |
[11] | Paulose Maggie, Shankar Karthik, Yoriya Sorachon, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. Journal of Physical Chemistry B, 2006, 110(33): 16179-16184. |
[12] | Jin Xiao Yan, Liu Zhi Yong, Lu Yu Ming, et al. Enhanced conversion efficiency in dye-sensitized solar cells with nanocomposite photoanodes. Journal of Physics D: Applied Physics, 2011, 44(25): 255103-1-5. |
[13] | Park J H, Lee T W, Kang M G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, 2008(25): 2867-2869. |
[14] | Bai Yu, Park Song, Park Hyeoung Ho, et al. The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis., 2011, 43(6): 998-1005. |
[15] | Zhu Kai, Neale Nathan R, Miedaner Alexander, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69-74. |
[16] | Natu Gayatri, Huang Zhongjie, Ji Zhiqiang, et al. The effect of an atomically deposited layer of alumina on NiO in P-type dye sensitized solar cells. Langmuir, 2012, 28(1): 950-956. |
[17] | Han Liyuan, Koide Naoki, Chiba Yasuo, et al. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie, 2006, 9(5/6): 645-651. |
[18] | Chen You-Han, Huang Kuan-Chieh, Chen Jian-Ging, et al. Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells. Electrochimica Acta, 2011, 56(23): 7999-8004. |
[19] | Chen Qingwei, Xu Dongsheng. Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. Journal of Physical Chemistry C, 2009, 113(15): 6310-6314. |
[20] | Roy Poulomi, Kim Doohun, Paramasivam Indhumati, et al. Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochemistry Communications, 2009, 11(5): 1001-1004. |
[1] | CHENG Hou-Yan, LUO Jun, HUANG Li-Qun, LI Jia-Ke, YANG Zhi-Sheng, GUO Ping-Chun, WANG Yan-Xiang, ZHANG Qi-Feng. Preparation of Flexible Dye-sensitized Solar Cells Based on Hierarchical Structure ZnO Nanosheets [J]. Journal of Inorganic Materials, 2018, 33(5): 507-514. |
[2] | YIN Yue-Feng, LIANG Gui-Jie, ZHANG Qiang, PAN Zheng, LI Wang-Nan, LI Zai-Fang. Optimization of Dye-sensitized Solar Cells Prepared by Pechini Sol-Gel Method [J]. Journal of Inorganic Materials, 2016, 31(7): 739-744. |
[3] | ZHANG Chen-Le, ZHANG Pei-Xin, YUN Si-Ning, LI Yong-Liang, HE Ting-Shu. Recent Progress on Preparation of Transition Metal Compounds as Counter Electrodes for Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(2): 113-122. |
[4] | HU Xue-Mei, GU Zheng-Ying, LI Xiao-Min, GAO Xiang-Dong, SHI Ying. Hybrid Photoanodes Based on Nanoporous Lithium Titanate Nanostructures in Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2015, 30(10): 1037-1042. |
[5] | WANG Gui-Qiang, WANG De-Long, KUANG Shuai, ZHUO Shu-Ping . Research Progress on Transition Metal Compound Used as Highly Efficient Counter Electrode of Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2013, 28(9): 907-915. |
[6] | ZHU Xin-Bo, FANG Xiao-Dong, DENG Zan-Hong, DONG Wei-Wei, WANG Shi-Mao, SHAO Jing-Zhen, HU Lin-Hua, ZHU Jun. Effects of Hydrothermal Growth Conditions of ZnO Nanorods Arrays on Flexible Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2012, 27(7): 775-779. |
[7] | ZHAO Li, FAN Jia-Jie, LI Jing, DAI Guo-Tian, WANG Shi-Min. Preparation and Photoelectric Properties of ZnO/TiO2 Nanotubes Film Electrodes [J]. Journal of Inorganic Materials, 2012, 27(6): 585-590. |
[8] | JIN Chong, ZHANG Wei-Guo, YAO Su-Wei, WANG Hong-Zhi. Effect of Heat-treatment Process on the Structure and Photoelectric Performance of TiO2 Nanotube Arrays [J]. Journal of Inorganic Materials, 2012, 27(1): 54-58. |
[9] | ZHANG Qing-Hong. Progress on TiO2-based Nanomaterials and Its Utilization in the Clean Energy Technology [J]. Journal of Inorganic Materials, 2012, 27(1): 1-10. |
[10] | YU Rong, FENG Bo, WANG Jian-Xin, LU Xiong, QU Shu-Xin,WENG Jie. Protein-hydroxyapatite Composite Coatings on TiO2 Nanotube Layers and Bond Strength to Substrate [J]. Journal of Inorganic Materials, 2011, 26(9): 987-992. |
[11] | LI Jian, LUO Jia, PENG Zhen-Wen, GUO Xin. Preparation and Characterization of TiO2 Nanotube Arrays by Anodic Oxidation Method [J]. Journal of Inorganic Materials, 2010, 25(5): 490-494. |
[12] | GE Zeng-Xian, WEI Ai-Xiang, LIU Jun, ZHAO Wang, LIU Chuan-Biao. Synthesis and Photovoltaic Devices Performance of Single Crystalline TiO2 Nanowire Bundle Arrays [J]. Journal of Inorganic Materials, 2010, 25(10): 1105-1109. |
[13] | ZHANG Ji-Yuan,TIAN Han-Min,TIAN Zhi-Peng,WANG Xiang-Yan,YUTao,ZOU Zhi-Gang. Study on Sol-hydrothermal Synthesis of TiO2 Nanoparticles and their Photoelectric Properties Sensitized by Dye [J]. Journal of Inorganic Materials, 2009, 24(6): 1110-1114. |
[14] | CUI Yun-Tao,WANG Jin-Shu,LI Hong-Yi,WANG Zhen-Zhen. Study on Synthesis in situ and Photocatalytic Activity of TiO2 Nanotubes Array Films [J]. Journal of Inorganic Materials, 2008, 23(6): 1259-1262. |
[15] | FANG Dong,LIU Su-Qin,CHEN Ruo-Yuan,HUANG Ke-Long,LI Juan-Sheng,YU Chao,QIN Ding-Yuan. Fabrication and Characterization of Highly Ordered Porous Anodic Titania on Titanium Substrate [J]. Journal of Inorganic Materials, 2008, 23(4): 647-651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||