[1]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho- olivines as positive-electrode materials for rechargeable lithium batteries.J. Electrochem. Soc,1997, 144(4):1188-1194
[2]Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates.J. Electrochem. Soc,1997, 144(5):1609-1613
[3]Thackeray M. Lithium-ion batteries-an unexpected conductor.Nat. Mater,2002, 1(2):81-82
[4]Higuchi M, Katayama K, Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing.J. Power Sources,2003, 119-121:258-261
[5]Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4.J. Power Sources,2001, 97-98:498-502
[6]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid State Lett., 2001, 4(10): A170-A172.
[7]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite.J. Power Sources,2001, 97-98:503-507
[8]Islam M S, Driscoll D J, Fisher C A J, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material.Chem. Mat,2005, 17(20):5085-5092
[9]Delacourt C, Wurm C, Laffont L, et al. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites.Solid State Ionics,2006, 177(3/4):333-341
[10]Kang H C, Jun D K, Jin B, et al. Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling.J. Power Sources,2008, 179(1):340-346
[11]Franger S, Benoit C, Bourbon C, et al. Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries.J. Phys. Chem. Solids,2006, 67(5/6):1338-1342
[12]Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates.Nat. Mater,2004, 3(3):147-152
[13]Rho Y H, Nazar L F, Perry L, et al. Surface chemistry of LiFePO4 studied by mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J. Electrochem. Soc., 2007, 154(4): A283-A289.
[14]Hu Y Q, Doeff M M, Kostecki R, et al. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium batteries. J. Electrochem. Soc., 2004, 151(8): A1279-A1285.
[15]Meligrana G, Gerbaldi C, Tuel A, et al. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells.J. Power Sources,2006, 160(1):516-522
[16]Zhu B Q, Li X H, Wang Z X, et al. Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction.Mater. Chem. Phys,2006, 98(2/3):373-376
[17]Barker J, Saidi M Y, Swoyer J L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid State lett., 2003, 6(3): A53-A55.
[18]Mi C H, Cao G S, Zhao X B. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode.Mater. Lett,2005, 59(1):127-130
[19]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes.Nat. Mater,2002, 1(2):123-128
[20]Liu H, Cao Q, Fu L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries.Electrochemistry Communications,2006, 8(10):1553-1557
[21]Shenouda A Y, Liu H K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode.J. Alloys Compd,2009, 477(1/2):498-503
[22]Ravet N, Gauthier M, Zaghib K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive.Chem. Mat,2007, 19(10):2595-2602
[23]Meethong N, Kao Y H, Speakman S A, et al. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties.Adv. Funct. Mater,2009, 19(7):1060-1070
[24]Moskon J, Dominko R, Cerc-Korosec R, et al. Morphology and electrical properties of conductive carbon coatings for cathode materials.J. Power Sources,2007, 174(2):683-688 |