Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (8): 893-900.DOI: 10.15541/jim20230008
• RESEARCH ARTICLE • Previous Articles Next Articles
FAN Jiashun1(), XIA Donglin2(
), LIU Baoshun2
Received:
2023-01-04
Revised:
2023-02-12
Published:
2023-08-20
Online:
2023-03-17
Contact:
XIA Donglin, associate professor. E-mail: donglinxia@whut.edu.cnAbout author:
FAN Jiashun (1999-), male, Master candidate. E-mail: 1712723883@qq.com
Supported by:
CLC Number:
FAN Jiashun, XIA Donglin, LIU Baoshun. Temperature Dependent Transient Photoconductive Response of CsPbBr3 NCs[J]. Journal of Inorganic Materials, 2023, 38(8): 893-900.
Fig. 1 Preparation process of CsPbBr3 NC thin film sample and schematic diagram of the transient photoconduction test (a-c) Preparation process of photoconductive samples; (d) Schematic diagram of the transient photoconduction test
Fig. 2 Optical absorption, PL spectra, microstructure and micromorphology of CsPbBr3 NCs (a) Optical absorption and PL spectra of CsPbBr3 NCs in n-hexane; (b) XRD pattern; (c) TEM image; (d) High resolution TEM image
Fig. 3 Curves of photo-generated current with light cycle time(t) at different temperatures and excitation powers for photoconductive samples (a) Current-voltage curve of 0-40 V measured at 133-373 K; (b, c) Curves of photo-generated current change with light cycle time at different temperatures; (d) Curves of photo-generated current change with light cycle time at different laser excitation power; Colorful figures are available on website
Fig. 4 Curves of temperature-dependent carrier photo-generated currents and the fastest decay time constants of the photoconductive samples Enlarged views of (a, b) falling and (c) rising edges with temperature changed from 133 to 373 K; (d, e) Normalized current-time curves and their fitting curves of temperature changed with temperature; (f) The fastest decay time constant τ1 obtained by fitting from experimental data of (d, e) with temperature change; Colorful figures are available on website
Temperatures/K | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
133 | (3.759±0.223) | (124.77±6.69) | (1324.35±361.18) |
153 | (3.723±0.216) | (127.40±5.72) | (1545.52±582.47) |
173 | (3.885±0.209) | (134.73±6.23) | (2141.44±1403.33) |
193 | (4.680±0.260) | (107.52±5.69) | (720.84±118.71) |
213 | (5.015±0.240) | (128.03±4.42) | (1473.34±412.23) |
233 | (5.985±0.322) | (124.42±4.29) | (1725.43±171.92) |
253 | (6.439±0.270) | (133.90±3.88) | (1535.70±80.51) |
273 | (7.721±0.193) | (133.68±2.92) | (1249.10±30.38) |
293 | (5.792±0.152) | (121.84±2.33) | (1249.65±34.02) |
313 | (5.176±0.140) | (123.42±2.59) | (1215.50±43.39) |
333 | (5.238±0.137) | (119.48±2.78) | (1061.38±47.03) |
353 | (4.638±0.114) | (115.78±3.05) | (1127.95±113.98) |
373 | (4.254±0.128) | (116.16±4.02) | (2370.56±1223.21) |
Table 1 Fitting parameters of time normalized current curve at different temperatures
Temperatures/K | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
133 | (3.759±0.223) | (124.77±6.69) | (1324.35±361.18) |
153 | (3.723±0.216) | (127.40±5.72) | (1545.52±582.47) |
173 | (3.885±0.209) | (134.73±6.23) | (2141.44±1403.33) |
193 | (4.680±0.260) | (107.52±5.69) | (720.84±118.71) |
213 | (5.015±0.240) | (128.03±4.42) | (1473.34±412.23) |
233 | (5.985±0.322) | (124.42±4.29) | (1725.43±171.92) |
253 | (6.439±0.270) | (133.90±3.88) | (1535.70±80.51) |
273 | (7.721±0.193) | (133.68±2.92) | (1249.10±30.38) |
293 | (5.792±0.152) | (121.84±2.33) | (1249.65±34.02) |
313 | (5.176±0.140) | (123.42±2.59) | (1215.50±43.39) |
333 | (5.238±0.137) | (119.48±2.78) | (1061.38±47.03) |
353 | (4.638±0.114) | (115.78±3.05) | (1127.95±113.98) |
373 | (4.254±0.128) | (116.16±4.02) | (2370.56±1223.21) |
Fig. 5 Curves of excitation power-dependent carrier photo-generated current and the fastest decay time constant of the photoconductive samples (a) Curve of photo-generated current of samples with light cycle time at different excitation power; (b) Normalized current-time curve and their fitting curve with different excitation power; (c) The fastest decay time constant τ1 obtained by fitting from experimental data of (b) with excitation power change; Colorful figures are available on website
Power/mW | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
200 | (25.955±0.493) | (117.67±22.31) | (822.18±234.43) |
300 | (15.411±0.686) | (91.76±17.61) | (502.61±110.28) |
400 | (10.856±0.392) | (86.72±13.96) | (423.04±60.38) |
500 | (13.300±0.351) | (100.49±15.70) | (444.26±71.77) |
600 | (10.824±0.281) | (52.30±4.84) | (318.36±12.73) |
700 | (8.775±0.322) | (74.87±6.95) | (353.29±21.81) |
800 | (11.546±0.210) | (62.75±6.64) | (325.15±15.40) |
900 | (11.412±0.183) | (89.94±7.53) | (386.28±29.85) |
1000 | (9.431±0.132) | (51.78±2.85) | (294.00±7.33) |
Table 2 Fitting parameters of time normalized current curve at different powers
Power/mW | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
200 | (25.955±0.493) | (117.67±22.31) | (822.18±234.43) |
300 | (15.411±0.686) | (91.76±17.61) | (502.61±110.28) |
400 | (10.856±0.392) | (86.72±13.96) | (423.04±60.38) |
500 | (13.300±0.351) | (100.49±15.70) | (444.26±71.77) |
600 | (10.824±0.281) | (52.30±4.84) | (318.36±12.73) |
700 | (8.775±0.322) | (74.87±6.95) | (353.29±21.81) |
800 | (11.546±0.210) | (62.75±6.64) | (325.15±15.40) |
900 | (11.412±0.183) | (89.94±7.53) | (386.28±29.85) |
1000 | (9.431±0.132) | (51.78±2.85) | (294.00±7.33) |
[1] |
HERZ L M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annual Review of Physical Chemistry, 2016, 67(1): 65.
DOI URL |
[2] |
MANSER J S, KAMAT P V. Band filling with free charge carriers in organometal halide perovskites. Nature Photonics, 2014, 8(9): 737.
DOI |
[3] |
WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584.
DOI URL |
[4] |
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519.
DOI URL |
[5] |
GUO Z, MANSER J S, WAN Y, et al. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 2015, 6(1): 7471.
DOI |
[6] |
LIU S, WANG L, LIN W C, et al. Imaging the long transport lengths of photo-generated carriers in oriented perovskite films. Nano Letters, 2016, 16(12): 7925.
DOI URL |
[7] |
WANG N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699.
DOI |
[8] |
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light- emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687.
DOI |
[9] |
XING G, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014, 13(5): 476.
DOI |
[10] |
HU X, ZHANG X, LIANG L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373.
DOI URL |
[11] |
HU Q, WU H, SUN J, et al. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8(9): 5350.
DOI URL |
[12] | HU W, HUANG W, YANG S, et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Advanced Materials, 2017, 29(43): 1703256. |
[13] |
THUMU U, PIOTROWSKI M, OWENS-BAIRD B, et al. Zero- dimensional cesium lead halide perovskites: phase transformations, hybrid structures, and applications. Journal of Solid State Chemistry, 2019, 271: 361.
DOI URL |
[14] |
DARMAWAN Y A, YAMAUCHI M, MASUO S. In situ observation of a photodegradation-induced blueshift in perovskite nanocrystals using single-particle spectroscopy combined with atomic force microscopy. The Journal of Physical Chemistry C, 2020, 124(34): 18770.
DOI URL |
[15] |
ZHANG X, ZHAO D, LIU X, et al. Ferroelastic domains enhanced the photoelectric response in a CsPbBr3 single-crystal film detector. The Journal of Physical Chemistry Letters, 2021, 12(35): 8685.
DOI URL |
[16] |
KAUR G, BABU K J, GHOSH H N. Temperature-dependent interplay of polaron formation and hot carrier cooling dynamics in CsPbBr3 nanocrystals: role of carrier-phonon coupling strength. The Journal of Physical Chemistry Letters, 2020, 11(15): 6206.
DOI URL |
[17] |
EAMES C, FROST J M, BARNES P R F, et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 2015, 6(1): 7497.
DOI |
[18] |
MIYATA A, MITIOGLU A, PLOCHOCKA P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics, 2015, 11(7): 582.
DOI |
[19] |
CHRISTIANS J A, MANSER J S, KAMAT P V. Multifaceted excited state of CH3NH3PbI3. Charge separation, recombination, and trapping. The Journal of Physical Chemistry Letters, 2015, 6(11): 2086.
DOI URL |
[20] |
YANG Y, YANG M, LI Z, et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. The Journal of Physical Chemistry Letters, 2015, 6(23): 4688.
DOI URL |
[21] |
PIATKOWSKI P, COHEN B, PONSECA C S, et al. Unraveling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film. The Journal of Physical Chemistry Letters, 2016, 7(1): 204.
DOI URL |
[22] |
KAUR G, GHOSH H N. Hot carrier relaxation in CsPbBr3-based perovskites: a polaron perspective. The Journal of Physical Chemistry Letters, 2020, 11(20): 8765.
DOI URL |
[23] |
HOYE R L Z, BRANDT R E, OSHEROV A, et al. Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chemistry - A European Journal, 2016, 22(8): 2605.
DOI URL |
[24] |
PAL J, MANNA S, MONDAL A, et al. Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites. Angewandte Chemie International Edition, 2017, 56(45): 14187.
DOI URL |
[25] |
ABULIKEMU M, OULD-CHIKH S, MIAO X, et al. Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. Journal of Materials Chemistry A, 2016, 4(32): 12504.
DOI URL |
[26] | UMAR F, ZHANG J, JIN Z, et al. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method. Advanced Optical Materials, 2019, 7(5): 1801368. |
[27] |
AWNI R A, SONG Z, CHEN C, et al. Influence of charge transport layers on capacitance measured in halide perovskite solar cells. Joule, 2020, 4(3): 644.
DOI URL |
[28] |
ALMORA O, GARCÍA-BATLLE M, GARCIA-BELMONTE G. Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. The Journal of Physical Chemistry Letters, 2019, 10(13): 3661.
DOI URL |
[29] | PECUNIA V, ZHAO J, KIM C, et al. Assessing the impact of defects on lead-free perovskite-inspired photovoltaics via photoinduced current transient spectroscopy. Advanced Energy Materials, 2021, 11(22): 2003968. |
[30] |
BARNES P R F, MIETTUNEN K, LI X, et al. Interpretation of optoelectronic transient and charge extraction measurements in dye-sensitized solar cells. Advanced Materials, 2013, 25(13): 1881.
DOI URL |
[31] |
SETH S, SAMANTA A. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Scientific Reports, 2016, 6(1): 37693.
DOI |
[32] |
GORDILLO G, OTÁLORA C A, RAMIREZ A A. A study of trap and recombination centers in MAPbI3 perovskites. Physical Chemistry Chemical Physics, 2016, 18(48): 32862.
DOI URL |
[33] |
LI J, YUAN X, JING P, et al. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Advances, 2016, 6(82): 78311.
DOI URL |
[34] |
LIAO M, SHAN B, LI M. In situ Raman spectroscopic studies of thermal stability of all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals. The Journal of Physical Chemistry Letters, 2019, 10(6): 1217.
DOI URL |
[35] | MIRANDA P B, HEEGER A J, MOSES D. Ultrafast photogeneration of charged polarons in conjugated polymers. Physical Review B, 2001, 64(8): 1201. |
[36] |
YETTAPU G R, TALUKDAR D, SARKAR S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Letters, 2016, 16(8): 4838.
DOI URL |
[37] |
LI X, WU Y, ZHANG S, et al. Quantum dots: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light- emitting diodes. Advanced Functional Materials, 2016, 26(15): 2584.
DOI URL |
[38] |
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design, 2013, 13(7): 2722.
DOI URL |
[39] |
DU W, ZHANG S, WU Z, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 2019, 11(7): 3145.
DOI URL |
[40] |
YAMADA Y, NAKAMURA T, ENDO M, et al. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. Journal of the American Chemical Society, 2014, 136(33): 11610.
DOI URL |
[1] | ZHANG Lou-Wen, SHEN Shao-Li, LI Lu-Ying, ZHANG Zhi, LIU Ni-Shuang, GAO Yi-Hua. Application and Development of Cesium Lead Halide Perovskite Based Planar Heterojunction LEDs [J]. Journal of Inorganic Materials, 2019, 34(1): 37-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||