Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 532-540.DOI: 10.15541/jim20190237
Special Issue: 封面文章; 2020年能源材料论文精选(一) :金属离子电池&燃料电池
Previous Articles Next Articles
WANG Jianing1,2,JIN Jun1,WEN Zhaoyin1()
Received:
2019-05-20
Revised:
2019-06-04
Published:
2020-05-20
Online:
2019-06-17
Supported by:
CLC Number:
WANG Jianing, JIN Jun, WEN Zhaoyin. Application of Separators Modified by Carbon Nanospheres Enriched with α-MoC1-x Nanocrystalline in Lithium Sulfur Batteries[J]. Journal of Inorganic Materials, 2020, 35(5): 532-540.
Fig. 1 SEM images of (a, d) the precursor of the α-MoC1-x/CNS composite and (b-c, e) the α-MoC1-x/CNS composite; (f) Mo, C and O element mappings and (g-i) TEM images of the α-MoC1-x/CNS composite
Fig. 2 (a) XRD patterns of the α-MoC1-x/CNS composite and its precursor; (b) Mo 3d and (c) O 1s XPS spectra, (d) N2 adsorption-desorption isotherm (inset: pore size distribution), (e) Raman spectrum, (f) TGA curve (under air flow) of the α-MoC1-x/CNS composite
Fig. 3 (a) Photograph of the synthesized α-MoC1-x/CNS-PP separator with positive and negative sides; (b) SEM image and (c) measurement of the electrolyte contact angle for Celgard 2400 separator; (d) Typical cross-sectional, (e) surface SEM images and (f) measurement of the electrolyte contact angle for α-MoC1-x/CNS-PP separator; (g-i) Corresponding elemental mappings of C, O, Mo in (e)
Fig. 4 Cyclic voltammograms of the Li-S battery with (a) Celgard 2400 separator and (b) α-MoC1-x/CNS-PP separator; (c) Rate performances with different separators at various current densities; (d) Charge-discharge voltage profiles at various current densities of the Li-S battery with α-MoC1-x/CNS-PP separator
Fig. 7 Self-discharge tests for lithium sulfur batteries with Celgard 2400 separator or α-MoC1-x/CNS-PP separator (a) Discharge-charge profiles within 120 h; (b) Corresponding cycling performance
[1] | BERG E J, VILLEVIEILLE C, STREICH D , et al. Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc., 2015,162(14):A2468-A2475. |
[2] |
MANTHIRAM A, FU Y Z, CHUNG S H , et al. Rechargeable lithium- sulfur batteries. Chem. Rev., 2014,114(23):11751-11787.
DOI URL PMID |
[3] | AO X, WU W X, WU T , et al. Operating temperature on cathode material and electrochemical performance of Na-NiCl2 batteries. J. Inorg. Mater., 2017,32(12):1243-1249. |
[4] |
YIN Y X, XIN S, GUO Y G , et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed., 2013,52(50):13186-13200.
DOI URL PMID |
[5] | WANG Y H, JIN J, GUO Z S , et al. Direct view for the deformation evolution of sulfur electrode during Li-S battery cycling. J. Inorg. Mater., 2017,32(3):247-251. |
[6] |
HASSOUN J, SCROSATI B . A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed., 2010,49(13):2371-2374.
DOI URL PMID |
[7] |
LIN Z, LIU Z C, DUDNEY N J , et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano, 2013,7(3):2829-2833.
DOI URL PMID |
[8] |
KIM J W, OCON J D, PARK D W , et al. Functionalized graphene- based cathode for highly reversible lithium-sulfur batteries. ChemSusChem, 2014,7(5):1265-1273.
DOI URL PMID |
[9] | DIAO Y, XIE K, HONG X B , et al. Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery. Acta Chim. Sin., 2013,71(4):508-518. |
[10] |
MIKHAYLIK Y V, AKRIDGE J R . Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc., 2004,151(11):A1969-A1976.
DOI URL PMID |
[11] | JI X L, NAZAR L F . Advances in Li-S batteries. J. Mater. Chem., 2010,20(44):9821-9826. |
[12] | XU G Y, DING B, PAN J , et al. High performance lithium-sulfur batteries: advances and challenges. J. Mater. Chem. A, 2014,2(32):12662-12676. |
[13] |
SU Y S, MANTHIRAM A . Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun., 2012,3:1166.
DOI URL PMID |
[14] |
ZU C X, SU Y S, FU Y Z , et al. Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys., 2013,15(7):2291-2297.
DOI URL PMID |
[15] |
XIAO Z B, YANG Z, WANG L , et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater., 2015,27(18):2891-2898.
DOI URL PMID |
[16] |
ZHOU W D, XIAO X C, CAI M , et al. Polydopamine-coated, nitrogen- doped, hollow carbon sulfur double-layered core-shell structure for improving lithium sulfur batteries. Nano Lett., 2014,14(9):5250-5256.
DOI URL PMID |
[17] | FU Y Z, MANTHIRAM A . Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium- sulfur batteries. J. Phys. Chem. C, 2012,116(16):8910-8915. |
[18] | MA G Q, WEN Z Y, JIN J , et al. Enhanced cycle performance of Li-S battery with a polypyrrole functional interlayer. J. Power Sources, 2014,267:542-546. |
[19] |
XING Y, YANG Y, CHEN R J , et al. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small, 2018,14(19):1704366
DOI URL PMID |
[20] | WANG C L, SUN L S, ZHANG F F , et al. Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small, 2017,13(32):1701246. |
[21] | ZHANG S P, WANG G, JIN J , et al. Self-catalyzed decomposition of discharge products on the oxygen vacancy sites of MoO3 nanosheets for low-overpotential Li-O2 batteries. Nano Energy, 2017,36:186-196. |
[22] |
ZHOU F, LI Z, LUO X , et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett., 2018,18(2):1035-1043.
DOI URL PMID |
[23] |
NI L B, ZHAO G J, YANG G , et al. Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 2017,9(40):34793-34803.
DOI URL PMID |
[1] | WANG Xinling, ZHOU Na, TIAN Yawen, ZHOU Mingran, HAN Jingru, SHEN Yuansheng, HU Zhiyi, LI Yu. SnS2/ZIF-8 Derived Two-dimensional Porous Nitrogen-doped Carbon Nanosheets for Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2023, 38(8): 938-946. |
[2] | LI Gaoran, LI Hongyang, ZENG Haibo. Recent Progress of Boron-based Materials in Lithium-sulfur Battery [J]. Journal of Inorganic Materials, 2022, 37(2): 152-162. |
[3] | JIN Gaoyao, HE Haichuan, WU Jie, ZHANG Mengyuan, LI Yajuan, LIU Younian. Cobalt-doped Hollow Carbon Framework as Sulfur Host for the Cathode of Lithium Sulfur Battery [J]. Journal of Inorganic Materials, 2021, 36(2): 203-209. |
[4] | YANG Shu-Ting, YAN Chong, CAO Zhao-Xia, SHI Meng-Jiao, LI Yan-Lei, YIN Yan-Hong. Preparation of Hierarchical Porous Carbon/Sulfur Composite Based on Lotus-leaves and Its Property for Li-S Batteries [J]. Journal of Inorganic Materials, 2016, 31(2): 135-140. |
[5] | CHEN Long, LIU Jing-Dong, ZHANG Shi-Qun. Preparation of Mesoporous Carbon/Sulfur Composite Loaded with ZnS and Its Property for Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2013, 28(10): 1127-1131. |
[6] | JIN Guang-Zhou,FAN Xiu-Ju,SUN Gui-Da,GAO Jun-Bin,ZHU Jian-Hua. Preparation and Characterization of Molybdenum Carbides [J]. Journal of Inorganic Materials, 2007, 22(3): 504-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||