Journal of Inorganic Materials
Previous Articles Next Articles
LI Yang1, CHEN Jianing2, QING Yuchang3, FAN Bingbing2
Received:2025-11-11
Revised:2025-12-10
Contact:
QING Yuchang, professor. E-mail: qingyuchang@nwpu.edu.cn; FAN Bingbing, professor. E-mail: fanbingbing@zzu.edu.cn
About author:LI Yang (1993–), male, associate research. E-mail: liyang119@zzu.edu.cn
Supported by:CLC Number:
LI Yang, CHEN Jianing, QING Yuchang, FAN Bingbing. Interface Modulation and Microwave Absorbing Mechanism of Ti4O7/CoNi/CNT Heterostructures[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250456.
| [1] 李英豪, 廖擎玮, 殷宇翔, 等. 多波段兼容隐身材料的研究进展. 现代技术陶瓷, 2025, 46(5): 431. [2] CHEN H Y, TANG Z P, YIN L J,et al. Low-frequency microwave absorption of CIPs@Mn0.8Zn0.2Fe2O4-CNTs composites. Journal of Inorganic Materials, 2024, 39(1): 71. [3] WAN H J, XIAO X.Terahertz electromagnetic shielding and absorbing of MXenes and their composites.Journal of Inorganic Materials, 2024, 39(2): 129. [4] 李明展, 李恩, 潘亚敏, 等. 电磁屏蔽导电涂料的研究与应用进展. 复合材料学报, 2024, 41(2): 572. [5] GUAN H Y, ZHANG L, JING K K,et al. Interfacial mechanical properties of the domestic 3rd generation 2.5D SiCf/SiC composite. Journal of Inorganic Materials, 2024, 39(3): 259. [6] 王江涛, 陈帅, 沈承, 等. 吸波材料/结构及吸波-承载功能一体化结构研究进展. 复合材料学报, 2024, 41(8): 3866. [7] 徐俊杰, 王岭, 王晓猛, 等. 耐高温吸波材料的研究进展. 现代技术陶瓷, 2024, 45: 189. [8] KOLBRECKA K, PRZYLUSKI J.Sub-stoichiometric titanium oxides as ceramic electrodes for oxygen evolution—structural aspects of the voltammetric behaviour of TinO2n-1. Electrochimica Acta, 1994, 39(11/12): 1591. [9] 李阳, 高振良, 卿玉长, 等. TixO2x-1基电磁波吸收剂的研究现状与设计展望. 现代技术陶瓷, 2025, 46(S1): 327. [10] ANDERSSON S, MAGNÉLI A. Diskrete titanoxydphasen im zusammensetzungsbereich TiO1.75-TiO1.90.Naturwissenschaften, 1956, 43(21): 495. [11] XIA T, ZHANG C, OYLER N A,et al. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Advanced Materials, 2013, 25(47): 6905. [12] XIA T, CAO Y H, OYLER N A,et al. Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Applied Materials & Interfaces, 2015, 7(19): 10407. [13] GREEN M, XIANG P, LIU Z Q,et al. Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. Journal of Materiomics, 2019, 5(1): 133. [14] GREEN M, VAN TRAN A T, SMEDLEY R,et al. Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Materials Science, 2019, 1(1): 48. [15] XU J L, QI X S, LUO C Z,et al. Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology, 2017, 28(42): 425701. [16] XU J L, SUN L, QI X S,et al. A novel strategy to enhance the multiple interface effect using amorphous carbon packaged hydrogenated TiO2 for stable and effective microwave absorption. Journal of Materials Chemistry C, 2019, 7(20): 6152. [17] SHI S Q, HAO S J, YANG C,et al. Enhanced microwave absorption properties of reduced graphene oxide/TiO2 nanowire composites synthesized via simultaneous carbonation and hydrogenation. Journal of Materials Chemistry C, 2022, 10(25): 9586. [18] SHI X F, LIU Z W, LI X,et al. Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption. Chemical Engineering Journal, 2021, 419: 130020. [19] YANG P J, LI T H, LI H, et al. Effect of graphene on graphitization, electrical and mechanical properties of epoxy resin carbon foam. Journal of Inorganic Materials, 2024, 39(1): 107. [20] LI Y, QING Y C, CAO Y R,et al. Positive charge holes revealed by energy band theory in multiphase TixO2x-1 and exploration of its microscopic electromagnetic loss mechanism. Small, 2023, 19(41): 2302769. [21] 彭夏文, 张景钦, 陈凌云, 等. 雷达和红外隐身材料的最新研究进展及挑战. 材料研究与应用, 2025, 19(1): 15. [22] LUO W, JIANG X, LIU Y,et al. Entropy-driven morphology regulation of MAX phase solid solutions with enhanced microwave absorption and thermal insulation performance. Small, 2024, 20(8): 2305453. [23] QING Y C, LI Y, LI W,et al. Ti3+ self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications. Journal of Materials Chemistry C, 2021, 9(4): 1205. [24] LI Y, QING Y C, LI W,et al. Novel Magnéli Ti4O7/Ni/poly(vinylidene fluoride) hybrids for high-performance electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2021, 4(4): 1027. [25] LI Y, QING Y C, ZHAO B,et al. Tunable magnetic coupling and dipole polarization of core-shell Magnéli Ti4O7 ceramic/magnetic metal possessing broadband microwave absorption properties. Ceramics International, 2021, 47(23): 33373. [26] WANG L, YU X F, LI X,et al. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chemical Engineering Journal, 2020, 383: 123099. [27] WU Z C, YANG Z Q, JIN C,et al. Accurately engineering 2D/2D/0D heterojunction in hierarchical Ti3C2Tx MXene nanoarchitectures for electromagnetic wave absorption and shielding. ACS Applied Materials & Interfaces, 2021, 13(4): 5866. [28] HE M K, ZHANG K Y, QIU H,et al. Low-frequency microwave absorption composites. Advanced Science, 2025, 12(35): e11580. [29] QU N, SUN H X, SUN Y Y,et al. 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nature Communications, 2024, 15(1): 5642. [30] LU X K, LI X, CAO Y C,et al. 1D CNT-expanded 3D carbon foam/Si3N4 sandwich heterostructure: utilizing the polarization compensation effect for keeping stable electromagnetic absorption performance at elevated temperature. ACS Applied Materials & Interfaces, 2022, 14(34): 39188. [31] LI Y, QING Y C, ZHANG Y R,et al. Simultaneously tuning structural defects and crystal phase in accordion-like TixO2x-1 derived from Ti3C2Tx MXene for enhanced electromagnetic attenuation. Journal of Advanced Ceramics, 2023, 12(10): 1946. [32] FU X, YANG B, CHEN W,et al. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth. Journal of Materials Science & Technology, 2021, 76: 166. [33] XIAO J X, ZHAN B B, HE M K,et al. Mechanically robust and thermal insulating nanofiber elastomer for hydrophobic, corrosion-resistant, and flexible multifunctional electromagnetic wave absorbers. Advanced Functional Materials, 2025, 35(14): 2419266. [34] 吴海华, 傅文鑫, 刘少康, 等. ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能. 复合材料学报, 2024, 41(3): 1316. [35] QIAN J J, MA D D, ZHOU X L,et al. Synthesis of SiOC@C ceramic nanospheres with tunable electromagnetic wave absorption performance. Journal of Advanced Ceramics, 2024, 13(9): 1394. [36] LI X, WANG X L, LI M H,et al. Built-in electric field enhancement strategy induced by cross-dimensional nano-heterointerface design for electromagnetic wave absorption. Advanced Functional Materials, 2025, 35(18): 2407217. [37] CHEN Y Q, CHEN M, LEI H Y,et al. Microwave-assisted synthesis of high-performance TaC nanorods for enhanced electromagnetic wave absorption. Journal of Advanced Ceramics, 2025, 14(8): 9221130. [38] LI Y, QING Y C, ZHOU Y F,et al. Unique nanoporous structure derived from Co3O4-C and Co/CoO-C composites towards the ultra-strong electromagnetic absorption. Composites Part B: Engineering, 2021, 213: 108731. [39] YANG L Y, WANG L M, DONG S,et al. Lightweight Cf/HC-SiBCN composite for multifunctional applications. Journal of Advanced Ceramics, 2025, 14(5): 9221068. [40] 王腾飞, 刘博宇, 庞青, 等. 缺陷介孔TiO2的制备及其吸波性能研究. 材料研究与应用, 2025, 19(1): 72. [41] YUAN M Y, LI B X, DU Y Q,et al. Programmable electromagnetic wave absorption via tailored metal single atom-support interactions. Advanced Materials, 2025, 37(8): 2417580. [42] LIANG Q Q, HE M K, ZHAN B B,et al. Yolk-shell CoNi@N-doped carbon-CoNi@CNTs for enhanced microwave absorption, photothermal, anti-corrosion, and antimicrobial properties. Nano-Micro Letters, 2025, 17(1): 167. [43] CHE R C, M PENG L, DUAN X F,et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Advanced Materials, 2004, 16(5): 401. [44] YAO L, DANG J, XIAO J X,et al. Metal chelate-derived and catalytical strategy to produce CoFe/C@bamboo-like carbon nanotubes for microwave absorption, hydrophobicity, and corrosion resistance. Journal of Materials Science & Technology, 2026, 240: 190. |
| [1] | ZHU Zhengwang,FENG Rui,LIU Yang,ZHANG Yang,XIE Wenhan,DONG Lijie. Preparation and Property of CoFe2O4 Nanofibers with Fishbone-like Structure [J]. Journal of Inorganic Materials, 2020, 35(9): 1011-1016. |
| [2] | HE Yong-Qin, LI Xiao-Yun, ZHANG Jing-Xian, LI Xiao-Guang. In situ Pyrolyzed Carbon on the Property of AlN-based Microwave Attenuation Ceramics [J]. Journal of Inorganic Materials, 2018, 33(4): 421-426. |
| [3] | ZHANG Xue-Ke, XIANG Jun, WU Zhi-Peng, LIU Min, SHEN Xiang-Qian. Co Content on Absorption Property of C/Co Nanofibers as a Lightweight Microwave Absorber [J]. Journal of Inorganic Materials, 2017, 32(12): 1299-1307. |
| [4] | LIU Ke, WANG Ji-Tong, LONG Dong-Hui, LING Li-Cheng. Scalable Preparation and Microwave Absorption of Lightweight Fe3O4/Mesoporous Carbon Microsphere Composites [J]. Journal of Inorganic Materials, 2017, 32(10): 1023-1028. |
| [5] | LI Jia-Le, XIANG Jun, YE Qin, LIU Min, SHEN Xiang-Qian. Microwave Absorption Properties of Double-layer Absorbing Coatings Based on Ni0.4Co0.2Zn0.4Fe2O4 and BaTiO3 Nanofibers [J]. Journal of Inorganic Materials, 2015, 30(5): 479-486. |
| [6] | WU Xiao-Yu, LI Song-Mei,LIU Jian-Hua, YU Mei, WANG Bo. Preparation and Microwave Absorption Properties of CoFe2O4-graphene Nanocomposites [J]. Journal of Inorganic Materials, 2014, 29(8): 845-850. |
| [7] | LI Jia, LIU Hong-Bo, YANG Li. Research on Microwave Absorption Properties of FeCo/Graphite Nanocomposite [J]. Journal of Inorganic Materials, 2014, 29(5): 470-474. |
| [8] | ZHOU Wei, XIAO Peng, LI Yang, LUO Heng, HONG Wen. Microwave Absorbing Properties of Carbon Fibers Modified with BN/SiC Composite Coatings [J]. Journal of Inorganic Materials, 2014, 29(10): 1093-1098. |
| [9] | ZHOU Wei, XIAO Peng, LI Yang, LUO Heng, ZHOU Liang. Synthesis and Microwave Absorbing Properties of PyC/BN Composite Powders [J]. Journal of Inorganic Materials, 2013, 28(5): 479-484. |
| [10] | FANG Jian-Jun, LI Su-Fang, ZHA Wen-Ke, CONG Hong-Yun, CHEN Jun-Fang, CHEN Zong-Zhang. Microwave Absorbing Properties of Nickel-coated Graphene [J]. Journal of Inorganic Materials, 2011, 26(5): 467-471. |
| [11] | YANG Yan, LI Sheng-Tao. CaCu3Ti4O12 Ceramics Prepared by Coprecipitation Method [J]. Journal of Inorganic Materials, 2010, 25(8): 835-839. |
| [12] | ZHANG Yan-Qing,ZHANG Xiong. Microwave Absorbing Property and Modification of Ferrite-encapsulated Cenosphere Powders [J]. Journal of Inorganic Materials, 2009, 24(4): 732-736. |
| [13] | WANG Deng-Ke,HUANG Hao,YU Kuai,ZHANG Xue-Feng,DONG Xing-Long. Synthesis and Microwave Absorption of the Silica-coated Fe Nanocomposites [J]. Journal of Inorganic Materials, 2009, 24(2): 340-344. |
| [14] | WU Xiao-Wei,FENG Yu-Jie,WEI Han,LIU Yan-Kun. Preparation of IR and Microwave Absorbing Barium Ferrite Material by Electroless Ni-P Plating [J]. Journal of Inorganic Materials, 2009, 24(1): 97-102. |
| [15] | LIU Yan-Kun,TIAN YAN,FENG Yu-Jie,WU Xiao-Wei,HAN Xia-Guang. Preparation and Microwave Absorption Properties of Ce-doped BaTiO3 [J]. Journal of Inorganic Materials, 2008, 23(5): 891-896. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||